🏃包含一些常用方法例如对象深克隆、递归调用、一一对比/数组交集、并集、差集/二维向量点乘、叉乘/股票KDJ、MACD、RSI、BOLL/验证为空、车牌号、邮箱、身份证、统一社会信用代码、手机号、版本对比/转换日期、星座、身份证解析、字节/随机颜色、手机号、身份证号码、统一社会信用代码...持续更新整合
npm install @3r/tool🏃包含一些常用方法例如对象深克隆、递归调用、一一对比/数组交集、并集、差集/二维向量点乘、叉乘/股票KDJ、MACD、RSI、BOLL/验证为空、车牌号、邮箱、身份证、统一社会信用代码、手机号、版本对比/转换日期、星座、身份证解析、字节/随机颜色、手机号、身份证号码、统一社会信用代码...持续更新整合
!action!npm!release!npm!sourcerank!NPM
#### 如何使用工具包 ?
👇Vue 小栗子 🐿
1.在工程下执行命令npm i @3r/tool安装依赖包
2.引用对应的工具类import { Maths } from "@3r/tool";
3.使用工具类的方法this.sum = Maths.sum([1, 2, 3]);
``vue
`
{{ sum }}
👇HTML 小栗子 🐿
1.定义一个标签
import { Maths } from "https://gcore.jsdelivr.net/npm/@3r/tool@0.0.14/index.js"
2.引用对应的工具类注意版本
let sum = Maths.sum([1, 2, 3])
3.使用工具类的方法
`
html
`
#### Animation 动画模块
包含一些动画的方法.
以下是相关示例:
`js
// TODO 可以参考相关示例 34.抽奖页面
// https://linyisonger.github.io/H5.Examples/
`
#### Common 常用模块
包含一些常用的方法.
以下是相关示例:
`js
console.log("深克隆", cloneDeep({}));
console.log("执行时间", executionTime());
console.log("防抖", antiShake(() => {}, 1000)());
console.log("节流", throttle(() => {}, 1000)());
console.log("打组",group([1, 2, 3, 4, 5], (item, index) => item % 3));
console.log("一一对比",contrast([1, 2, 3], (curr, next) => curr + next == 3));
console.log("递归调用", recursive(tree, console.log));
`
#### Convertor 转换模块
包含一些转换的方法.
以下是相关示例:
`js
console.log("社会统一信用代码转换组织机构代码", Convertor.usciToOibc("91411100766237140X"));
console.log("日期转换", Convertor.timeFormat(new Date(), "yyyy年MM月dd日 hh:mm:ss"));
console.log("千分位处理", Convertor.thousands(10009992.12));
console.log("文本转base64", Convertor.textToBase64("1234"));
console.log("base64转文本", Convertor.base64ToText("MTIzNA=="));
console.log("json对象转换base64", Convertor.jsonToBase64({ a: 1 }));
console.log("base64转换json对象", Convertor.base64ToJson("eyJhIjoxfQ=="));
console.log("颜色转换", Convertor.hexToRgb("f2a"));
console.log("颜色转换", Convertor.rgbToHex("rgb(235,239,241)"));
console.log("xml输出文本", Convertor.xmlToText("总金额 100,000.00"));
console.log("数字转大写人民币", Convertor.numToAmountInWords(102030.0));
console.log("数字转中文", Convertor.numToChinese(102030));
console.log("url query 转对象", Convertor.urlQueryToObject("http://example.com/user?id=1&age=2"));
console.log("url object 转 query", Convertor.urlObjectToQuery({ id: 1, age: 3 }));
console.log("蛇形命名法 -> 大驼峰命名法", Convertor.snakeCaseToUpperCamelcase("lower_case_with_underscores"));
console.log("蛇形命名法 -> 小驼峰命名法", Convertor.snakeCaseToLowerCamelcase("lower_case_with_underscores"));
console.log("驼峰命名法 -> 蛇形命名法", Convertor.camelcaseToSnakeCase("LowerCaseWithUnderscores"));
console.log("通过日期获取星座", Convertor.getConstellationByDate("09/14"));
console.log("身份证号解析", "230504199607116664".citizenIdentificationNumberParse);
console.log("字节转换", Convertor.byteFormat(1099511627776, 2));
console.log("四值法拆分", Convertor.fourValueSplit(1));
console.log("敏感信息加符号", Convertor.sensitivePlusSymbol("230504199607116664", "6,14"));
console.log("将字符串中的全角转换为半角", Convertor.toHalfWidthChar("【你好呀】"));
console.log("将字符串中的半角转换为全角", Convertor.toFullWidthChar("[哈哈哈哈]"));
`
#### Fakery 假数据模块
包含一些生成数据的方法.
以下是相关示例:
`js
console.log("身份证号码", Fakery.citizenIdentificationNumber());
console.log("社会统一信用代码", Fakery.usci());
console.log("手机号码", Fakery.phoneNumber());
console.log("姓名", Fakery.fullName());
console.log("银行卡号码 [工商银行卡号]", Fakery.bankCardNumber());
`
#### Generate 生成模块
包含一些生成的方法.
以下是相关示例:
`js
console.log("范围数字", Generate.rangeNumber(1, 7)); // [ 1, 2, 3, 4, 5, 6 ]
console.log("直线路径", Generate.straightLinePath(v2(0, 0), v2(0, 2), v2(2, 2))); // [{ x: 0, y: 0 },{ x: 0, y: 1 },{ x: 0, y: 2 },{ x: 1, y: 2 },{ x: 2, y: 2 }]
console.log("最近一周", Generate.rangeDateByPastWeek()); // [ '2026-01-18', '2026-01-19', '2026-01-20', '2026-01-21', '2026-01-22', '2026-01-23', '2026-01-24']
console.log("最近半个月", Generate.rangeDateByPastHalfMonth()); // [ ..., '2026-01-18', '2026-01-19', '2026-01-20', '2026-01-21', '2026-01-22', '2026-01-23', '2026-01-24']
console.log("最近一个月", Generate.rangeDateByPastMonth()); // [ ...,'2026-01-18', '2026-01-19', '2026-01-20', '2026-01-21', '2026-01-22', '2026-01-23', '2026-01-24']
`
#### Map 地图模块
包含一些与地图的方法.
以下是相关示例:
`js获取地球的半径:${Map.EARTHRADIUS}米
console.log();
计算郑州市到杭州市的距离约:${Map.distance({ latitude: 34.16, longitude: 112.42 }, { latitude: 30.3, longitude: 120.2 })}米
console.log();
`
#### Market 证券市场
包含一些股票的算法.
以下是相关示例:
`js
// 恒生电子的日k值 ———— https://stock.9fzt.com/ 九方智投 文章篇幅有限通过github访问测试文件
console.log("恒生电子KDJ值", Market.kdj(hundsunDayK.map(format9fzt)).pop());
console.log("恒生电子MACD值", Market.macd(hundsunDayK.map(format9fzt)).pop());
console.log("恒生电子RSI值", Market.rsi(hundsunDayK.map(format9fzt)).pop());
console.log("恒生电子BOLL值", Market.boll(hundsunDayK.map(format9fzt)).pop());
`
#### Maths 数学模块
包含一些与数学的方法.
以下是相关示例:
`js
console.log("获取整数12的所有因数", Maths.getFactors(12));
console.log("获取整数12的所有因数通过接近程度排序", Maths.getFactorsByApproach(12));
console.log("数组求和", Maths.sum([1, 2, 3, 4]));
console.log("判断a与b符号是否相同", Maths.sameSign(1, -1));
console.log("角度转弧度", Maths.degreeToRad(45));
console.log("弧度转角度", Maths.radToDegree(0.7853981633974483));
console.log("交集 A∩B", Maths.intersection([{ x: 1 }, { y: 2 }, { a: 2, z: 3 }, false, true, 1, 3, 5, { a: 2, c: [1, 2] }], [true, 5, 5, { z: 3, a: 2 }]));
console.log("对象是否相等", Maths.equal({ a: 2, z: 3 }, { z: 3, a: 2 }));
console.log("删除重复项", Maths.removeRepeat([{ x: 1, y: 2 }, 2, 3, { y: 2, x: 1 }, 1, 4, 5, 6, 2, 3, 4, 4, 45, 4, 31]));
console.log("补集", Maths.complementarySet([{ x: 1 }, { y: 2 }, { a: 2, z: 3 }, false, true, 1, 3, 5, { a: 2, c: [1, 2] }], [true, 5, 5, { z: 3, a: 2 }, 8, { z: 3, a: 3 }]));
console.log("并集", Maths.union([1, 23, 4, 556, 14, 124], [123, 452, 231, 1, 14]));
console.log("数组 通过下标改变位置 从3的位置移到1的位置", Maths.interchange([1, 2, 3, 4], 3, 1));
console.log("阶乘 10!", Maths.iterationFactorial(10));
console.log("勾股定理", Maths.pythagorasTheorem(3, 4));
console.log("在可及的范围内", Maths.inRange(4, 1, 5));
const tmp1 = [
"25952000000082304387",
"25952000000087201733",
"25952000000090118196",
"25942000000019659408",
"25612000000054155084",
"25532000000052842129",
"25532000000052851936",
"25532000000054146405",
"25532000000055013765",
"25532000000059848250",
"25532000000060442367",
"25532000000060601106",
"25532000000060608726",
"25517000000000359888",
"25517000000000359919",
"25512000000097428790",
"25512000000100563543",
"25512000000102424320",
"25512000000102597085",
"25512000000102752873",
"25512000000103419767",
"25512000000103572164",
"25512000000104032208",
"25512000000106769094",
"25512000000112158725",
"25502000000047112733",
"25502000000048343682",
"25502000000048451040",
"25502000000050714684",
"25452000000044654007",
"25452000000049599946",
"25442000000297735183",
"25442000000245640421",
"25442000000261397155",
"25442000000266690977",
"25442000000266693510",
"25442000000273172407",
"25432000000059485890",
"25422000000083037311",
"25422000000085258326",
"25422000000085279165",
"25422000000085303128",
"25422000000085306097",
"25422000000085330902",
"25417000000168993891",
"25417000000168993892",
"25417000000168993893",
"25417000000168993894",
"25417000000168993895",
"25417000000168993897",
"25417000000168993902",
"25417000000168993911",
"25417000000168993912",
"25417000000168993918",
"25417000000169201213",
"25417000000172073521",
"25417000000172133659",
"25417000000172133660",
"25417000000163598104",
"25417000000163598106",
"25417000000165292644",
"25417000000168993889",
"25417000000168993890",
"25417000000160844554",
"25417000000157367762",
"25417000000057223411",
"25417000000057223535",
"25417000000057223714",
"25417000000057223790",
"25417000000057223233",
"25414000000001072755",
"25412000000122340263",
"25412000000118945318",
"25412000000119089726",
"25412000000119107803",
"25412000000119204248",
"25412000000119471463",
"25412000000120297750",
"25412000000120328465",
"25442000000290226876",
"25412000000120941958",
"25412000000121395275",
"25412000000116199711",
"25412000000116254488",
"25412000000116616304",
"25412000000116697807",
"25412000000116715679",
"25412000000116946845",
"25412000000116983804",
"25412000000116983289",
"25412000000117741916",
"25412000000118086888",
"25412000000118124809",
"25412000000114439180",
"25412000000114488762",
"25412000000114743795",
"25412000000114811926",
"25412000000115620620",
"25412000000115998089",
"25412000000112554675",
"25412000000112602766",
"25412000000112589056",
"25412000000112615542",
"25412000000112746786",
"25412000000112959256",
"25412000000113032169",
"25412000000112984330",
"25412000000113041284",
"25412000000113244483",
"25412000000113459027",
"25412000000113698929",
"25412000000113770066",
"25412000000120009281",
"25412000000111288624",
"25412000000111327318",
"25412000000111414716",
"25412000000111434307",
"25412000000111455754",
"25412000000111544638",
"25412000000111663701",
"25412000000111697430",
"25412000000111698291",
"25412000000111989237",
"25412000000110212570",
"25412000000110213523",
"25412000000110244229",
"25412000000110319454",
"25412000000110444409",
"25412000000110577087",
"25412000000110802083",
"25412000000110845541",
"25412000000111063897",
"25412000000111126682",
"25412000000111146121",
"25412000000111196614",
"25412000000111262940",
"25412000000109236561",
"25412000000109270067",
"25412000000109337588",
"25412000000109662043",
"25412000000109671362",
"25412000000109684766",
"25412000000109711499",
"25412000000109723893",
"25412000000109884804",
"25412000000110159900",
"25412000000110168569",
"25412000000110178137",
"25412000000110187354",
"25412000000110187358",
"25412000000110192612",
"25412000000110211625",
"25412000000107722432",
"25412000000107833168",
"25412000000108088614",
"25412000000108090206",
"25412000000106564348",
"25412000000111297763",
"25412000000106592248",
"25412000000106632530",
"25412000000106649582",
"25412000000106703164",
"25412000000106787151",
"25412000000106788788",
"25412000000106878407",
"25412000000106904698",
"25412000000106953568",
"25412000000106954558",
"25412000000106967881",
"25412000000106968069",
"25412000000106976929",
"25412000000107029619",
"25412000000107043417",
"25412000000107076557",
"25412000000107092189",
"25412000000107141523",
"25412000000107331283",
"25412000000107429470",
"25412000000107570612",
"25412000000105217246",
"25412000000105266650",
"25412000000105533417",
"25412000000105683746",
"25412000000105859899",
"25412000000105887890",
"25412000000105934174",
"25412000000106036783",
"25412000000106071103",
"25412000000106419358",
"25412000000106419802",
"25412000000106448741",
"25412000000106457218",
"25412000000106464948",
"25412000000106475485",
"25412000000106482315",
"25412000000106521156",
"25412000000103835543",
"25412000000103960002",
"25412000000103998248",
"25412000000104177710",
"25412000000104436247",
"25412000000104503667",
"25412000000104508070",
"25412000000104677580",
"25412000000104740242",
"25412000000104801455",
"25412000000104929261",
"25412000000104929884",
"25412000000104959360",
"25412000000104978437",
"25412000000105009069",
"25412000000105021962",
"25412000000105046777",
"25412000000105068952",
"25412000000105099468",
"25412000000105160008",
"25412000000100995278",
"25412000000101181885",
"25412000000101630310",
"25412000000101983348",
"25412000000102702184",
"25412000000102887134",
"25412000000103069845",
"25412000000103079198",
"25412000000103079392",
"25412000000103106647",
"25412000000103125983",
"25412000000103143714",
"25412000000103150915",
"25412000000113727880",
"25412000000113753623",
"25412000000103170377",
"25412000000098748140",
"25412000000098952272",
"25412000000099238205",
"25412000000099267434",
"25412000000099379174",
"25412000000099482674",
"25412000000099728916",
"25412000000100447474",
"25412000000100513833",
"25412000000100736615",
"25412000000097525872",
"25412000000097809830",
"25412000000097818671",
"25412000000097836197",
"25412000000097836728",
"25412000000097818478",
"25412000000097827144",
"25412000000097845732",
"25412000000097871708",
"25412000000098030644",
"25412000000098346543",
"25412000000098441886",
"25412000000096420388",
"25412000000096873965",
"25412000000094963967",
"25412000000095372422",
"25412000000092542950",
"25412000000092775129",
"25412000000101259484",
"25412000000096845024",
"25412000000096468768",
"25412000000091735331",
"25412000000089832029",
"25412000000107610084",
"25412000000082031943",
"25412000000081371831",
"25412000000082431775",
"25412000000074913691",
"25412000000078272510",
"25372000000124804435",
"25372000000127043168",
"25372000000127222257",
"25372000000128679104",
"25372000000109922220",
"25372000000116226163",
"25372000000116255328",
"25372000000117593885",
"25372000000118460477",
"25372000000119530458",
"25372000000122506393",
"25362000000043380971",
"25352000000050816437",
"25352000000051012092",
"25352000000053646485",
"25352000000054025265",
"25352000000055569527",
"25342000000078116860",
"25342000000081613546",
"25342000000068247744",
"25342000000073302165",
"25342000000068255762",
"25342000000073278718",
"25342000000068263076",
"25342000000073302408",
"25342000000068272238",
"25342000000073302052",
"25342000000068272491",
"25342000000073288155",
"25342000000073236015",
"25342000000073794167",
"25332000000196814163",
"25332000000193466382",
"25332000000193944462",
"25332000000180515792",
"25332000000180525326",
"25332000000180535127",
"25332000000180535162",
"25332000000180545182",
"25332000000180554716",
"25332000000180554743",
"25332000000180564495",
"25332000000180704007",
"25332000000180995864",
"25332000000186995911",
"25332000000180387654",
"25332000000180426883",
"25332000000180446594",
"25332000000180466135",
"25332000000180485942",
"25332000000180485967",
"25332000000180496014",
"25332000000180496015",
"25322000000218664109",
"25322000000205128240",
"25317000000721940568",
"25317000000721940571",
"25317000000721940573",
"25317000000721940574",
"25317000000721940576",
"25317000000504939561",
"25317000000721940567",
"25317000000526098455",
"25317000000526099194",
"25317000000662122242",
"25317000000696364977",
"25317000000721938436",
"25312000000158466697",
"25312000000164515067",
"25312000000137799160",
"25312000000137805560",
"25312000000137809580",
"25312000000137843758",
"25312000000138737239",
"25312000000138164446",
"25312000000138749510",
"25312000000138755615",
"25312000000138759004",
"25312000000138798918",
"25312000000139159530",
"25312000000140074503",
"25312000000140077117",
"25312000000140681415",
"25312000000142292193",
"25312000000142307977",
"25312000000144720040",
"25312000000146916144",
"25312000000146916947",
"25312000000146917064",
"25312000000146918874",
"25312000000146919297",
"25312000000147290645",
"25312000000148737901",
"25312000000151411300",
"25312000000151460377",
"25312000000123973265",
"25312000000130428919",
"25312000000131900862",
"25312000000133227198",
"25312000000137900354",
"25312000000137908475",
"25312000000136195715",
"25312000000136701006",
"25312000000136705734",
"25312000000136706149",
"25312000000136707777",
"25312000000136707916",
"25312000000136709588",
"25222000000020254699",
"25232000000026682674",
"25212000000031701906",
"25212000000032953201",
"25212000000034620471",
"25212000000034759535",
"25212000000034875864",
"25212000000036604682",
"25137000000019463535",
"25132000000075626847",
"25132000000075663346",
"25132000000076140669",
"25132000000076643157",
"25132000000078999367",
"25132000000079181609",
"25132000000079423581",
"25132000000080082485",
"25132000000081136346",
"25132000000062351933",
"25132000000065971211",
"25132000000073704878",
"25127000000064144461",
"25122000000023196445",
"25122000000024451346",
"25122000000029856905",
"25412000000096918633",
"25122000000030548297",
"25122000000032224331",
"25332000000205928593",
"25412000000117163664",
"25412000000120878591",
"25504000000000704920",
"25504000000000734449",
"25504000000000744473",
"25534000000001763690",
"25534000000001803373",
"25534000000001833205",
"25112000000104695679",
"25112000000107017145",
"25112000000100874341",
"25112000000101532845",
"25112000000101831707",
"25112000000091460962",
"25112000000092172136",
"25112000000095602164",
"25112000000096609167",
"25112000000096364579",
"25112000000096399911",
"25112000000096586112",
"25112000000099059395",
"25112000000084553030",
"25112000000010088068",
"25212000000022019534",
"25372000000066742094",
];
const tmp2 = [
"25317000000526098455",
"25317000000526099194",
"25122000000023196445",
"25412000000089832029",
"25122000000024451346",
"25317000000662122242",
"25412000000092775129",
"25317000000696364977",
"25452000000044654007",
"25317000000721938436",
"25412000000098030644",
"25412000000098441886",
"25372000000109922220",
"25414000000001072755",
"25312000000130428919",
"25412000000101259484",
"25312000000131900862",
"25412000000101630310",
"25512000000100563543",
"25312000000133227198",
"25517000000000359888",
"25442000000245640421",
"25222000000020254699",
"25342000000073794167",
"25412000000103835543",
"25412000000103960002",
"25512000000102424320",
"25412000000103998248",
"25412000000104177710",
"25412000000104740242",
"25512000000102752873",
"25372000000118460477",
"25312000000136701006",
"25512000000102597085",
"25212000000034620471",
"25512000000103572164",
"25412000000104436247",
"25412000000104508070",
"25137000000019463535",
"25122000000029856905",
"25372000000117593885",
"25502000000047112733",
"25312000000136705734",
"25412000000104867253",
"25412000000104677580",
"25132000000075663346",
"25312000000136195715",
"25312000000136709588",
"25412000000105099468",
"25532000000052851936",
"25312000000136706149",
"25512000000103419767",
"25412000000105217246",
"25132000000075626847",
"25412000000105266650",
"25412000000104801455",
"25312000000136707777",
"25312000000136707916",
"25532000000052842129",
"25952000000087201733",
"25412000000105046777",
"25412000000105160008",
"25112000000091460962",
"25362000000043380971",
"25412000000106036783",
"25332000000185452616",
"25132000000076643157",
"25412000000105859899",
"25412000000105683746",
"25312000000137900354",
"25312000000137843758",
"25452000000049599946",
"25212000000034875864",
"25512000000104032208",
"25212000000034759535",
"25312000000138164446",
"25312000000137805560",
"25412000000105887890",
"25412000000105533417",
"25372000000119530458",
"25112000000092172136",
"25412000000106071103",
"25312000000137908475",
"25312000000137809580",
"25312000000137799160",
"25132000000076140669",
"25322000000205128240",
"25412000000106954558",
"25412000000106564348",
"25412000000106703164",
"25412000000107076557",
"25442000000261397155",
"25312000000138798918",
"25412000000106649582",
"25412000000107170222",
"25312000000139159530",
"25412000000106967881",
"25432000000059485890",
"25312000000138737239",
"25502000000048343682",
"25312000000138755615",
"25412000000106968069",
"25412000000106904698",
"25412000000106592248",
"25412000000106953568",
"25122000000030548297",
"25412000000106448741",
"25312000000138759004",
"25312000000138749510",
"25412000000106521156",
"25422000000083037311",
"25412000000107043417",
"25412000000107145950",
"25412000000107092189",
"25352000000050816437",
"25412000000106632530",
"25532000000054146405",
"25412000000107715915",
"25512000000106769094",
"25412000000107833168",
"25352000000051012092",
"25412000000107743303",
"25412000000107722432",
"25312000000140077117",
"25512000000106431906",
"25312000000140074503",
"25412000000108090206",
"25412000000108114960",
"25442000000266690977",
"25372000000122506393",
"25442000000266693510",
"25342000000078116860",
"25412000000109236561",
"25332000000193944462",
"25412000000109684766",
"25332000000193466382",
"25312000000142292193",
"25112000000095602164",
"25232000000026682674",
"25412000000109454869",
"25132000000078999367",
"25412000000109337588",
"25412000000109434866",
"25612000000052930826",
"25372000000124804435",
"25312000000144720040",
"25612000000052821767",
"25212000000036604682",
"25442000000273172407",
"25112000000096364579",
"25502000000050714684",
"25112000000096609167",
"25412000000110802083",
"25412000000111434307",
"25412000000111297763",
"25412000000111663701",
"25132000000080414346",
"25412000000111288624",
"25412000000111314968",
"25412000000111697430",
"25122000000032224331",
"25412000000111455754",
"25412000000112047432",
"25152000000025133577",
"25312000000146916947",
"25412000000112602766",
"25312000000146916144",
"25312000000146918874",
"25512000000112158725",
"25612000000054155084",
"25372000000127043168",
"25517000000000359919",
"25352000000053646485",
"25412000000112554675",
"25312000000146917064",
"25312000000146919297",
"25322000000218664109",
"25372000000127222257",
"25132000000081136346",
"25412000000112308777",
"25412000000113361704",
"25342000000081613546",
"25412000000112746786",
"25352000000054025265",
"25412000000113459027",
"25372000000128679104",
"25412000000113271529",
"25442000000281235458",
"25312000000151411300",
"25312000000151460377",
"25532000000060442367",
"25112000000100874341",
"25412000000114743795",
"25417000000157367762",
"25412000000114488762",
"25532000000060608726",
"25352000000055569527",
"25412000000115998089",
"25412000000116697807",
"25412000000116618730",
"25412000000116616304",
"25412000000116715679",
"25412000000118410627",
"25112000000104695679",
"25412000000118837096",
"25442000000297735183",
"25312000000158466697",
"25312000000158864758",
"25412000000120941958",
"25412000000121129510",
"25312000000164515067",
"25372000000117818458",
"25112000000107017145",
];
// console.log(Maths.removeRepeat(tmp1).toString());
const tmp3 = Maths.intersection(tmp1, tmp2);
const tmp4 = Maths.complementarySet(tmp3, tmp2);
const tmp5 = Maths.removeRepeat(tmp4);
console.log(tmp5.toString());
`
#### Picture 图像模块
包含一些与图像的方法.
以下是相关示例:
`js
console.log("scaleToFill 缩放模式,不保持纵横比缩放图片,使图片的宽高完全拉伸至填满 image 元素 ", scaleToFill(...p1));
console.log("aspectFill 缩放模式,保持纵横比缩放图片,只保证图片的短边能完全显示出来。也就是说,图片通常只在水平或垂直方向是完整的,另一个方向将会发生截取。", aspectFill(...p3));
console.log("aspectFit 缩放模式,保持纵横比缩放图片,使图片的长边能完全显示出来。也就是说,可以完整地将图片显示出来。", aspectFit(...p5));
`
#### Randoms 随机模块
包含一些随机的方法.
以下是相关示例:
`js
console.log("获取随机数(整数) [0~10)之间的数", Randoms.int(0, 10));
console.log("打乱数组", Randoms.getDisorganizeArray([{ a: 1 }, { b: 1 }, { c: 1 }]));
console.log("随机一个长度为10的只有大小写的字母字符串", Randoms.str(10, GetRandomStrEnum.LargeSmall));
console.log("全局唯一标识符(uuid)", Randoms.uuid());
// 数据格式 [{name:string,weight:number}] weight 支持自定义在第二个参数中
console.log("按权重获取随机索引", Randoms.getRandomIndexByWeight(prizes));
console.log("随机获取颜色", Randoms.getRandomColor());
console.log("随机获取身份证号码", Randoms.getRandomCitizenIdentificationNumber());
`
#### Verify 验证模块
包含一些验证的方法.
以下是相关示例:
`js
// 像是
// 就是还有可能不是
// 效率
// 没有太多的逻辑判断
console.log("像是社会统一信用代码", Verify.likeUsci("92230900EUFUTJY536"));
console.log('是否是null或者""', Verify.isNullOrEmpty(""));
console.log("校验是否是11位手机号码", Verify.isPhoneNumber("13062627854"));
console.log("校验是否是固定电话", Verify.isTellPhoneNumber("0371-99882211"));
console.log("是否是邮箱", Verify.isEmail("linyisonger@qq.com"));
// 这个验证校验码是否正确
console.log("是否是统一社会信用代码", Verify.isUnifiedSocialCreditIdentifier("92230900EUFUTJY536"));
console.log("是否是车牌号", Verify.isVehicleNumber("青G04444"));
console.log("像身份证号", Verify.likeIDCardNumber("37062219890704584X"));
console.log("是否是身份证号码", Verify.isCitizenIdentificationNumber("37062219890704584X"));
console.log("密码规则校验", Verify.passwordRules("abc123", PasswordRuleEnum.SmallNumber, 6, 20));
// 字符串拓展使用
console.log('是否是null或者""', "".isNullOrEmpty);
console.log("是否是{}", {}.isNullOrEmpty); // 无提示
console.log("像是社会统一信用代码", "92230900EUFUTJY536".likeUsci);
console.log("校验是否是11位手机号码", "13062627854".isPhoneNumber);
console.log("校验是否是固定电话", "0371-99882211".isTellPhoneNumber);
console.log("是否是邮箱", "linyisonger@qq.com".isEmail);
// 这个验证校验码是否正确
console.log("是否是统一社会信用代码", "55420502676482337D".isUnifiedSocialCreditIdentifier);
console.log("是否是车牌号", "青G04444".isVehicleNumber);
console.log("像身份证号", "622924198810193427".likeIDCardNumber);
console.log("是否是身份证号码", "622924198810193427".isCitizenIdentificationNumber);
console.log("密码规则校验", "abc123".passwordRules(PasswordRuleEnum.SmallNumber, 6, 20));
console.log("判断版本是否相等", "1.0.0".versionComparison("1.0.0"));
console.log("是否是IP地址", Verify.isIPAddress("244.255.123.1"));
console.log("获取密码难度等级", Verify.passwordDifficulty("abc123.."));
`
#### Vertor2 二维向量
包含一些与平面坐标系的方法.
以下是相关示例:
`js
console.log("向量相加", v2(1, 1).plus(v2(2, 2)));
console.log("向量相减", v2(1, 1).subtract(v2(2, 2)));
console.log("向量相乘", v2(2, 3).multiply(v2(2, 2)));
console.log("向量相除", v2(2, 3).divide(v2(2, 2)));
console.log("叉乘", v2(2, 3).multiplicationCross(v2(2, 2)));
console.log("点乘", v2(2, 3).dotProduct(v2(2, 2)));
console.log("检测两线段是否交叉", Vector2.checkCross(v2(0, 1), v2(10, 1), v2(1, 0), v2(1, 10)));
console.log("检测p点是否在点p1,p2,p3组成的三角形内", Vector2.checkInTriangle(v2(0, 1), v2(0, 0), v2(2, 0), v2(0, 2)));
console.log("检测p点是否在点p1,p2,p3,p4组成的矩形内", Vector2.checkInRectangle(v2(0, 1), v2(0, 0), v2(1, 0), v2(1, 1), v2(0, 1)));
console.log("p点绕o点旋转angle°", Vector2.rotateAroundPoint(v2(1, 0), v2(0, 0), 90));
console.log("计算p1到p2两点之间的距离 保留3位小数", Vector2.distance(v2(0, 0), v2(1, 0)));
console.log("计算两直线的夹角角度", Vector2.includedAngle(v2(1, 0), v2(1, 1)));
console.log("在距离处获取点", Vector2.getPointAtDist(v2(0, 0), v2(-1, 0), 0.5));
``
#### 🍻互助互利
如果代码上有什么问题、有什么好的想法欢迎将它提出来👇
https://github.com/linyisonger/3r.Tool/issues/new
感谢我的朋友们给提供需求建议🙇