Model Context Protocol server for agentic robotics with AgentDB integration
npm install @agentic-robotics/mcp


Model Context Protocol (MCP) server for agentic robotics with AgentDB memory and agentic-flow orchestration.
- š¤ 21 MCP Tools - Complete AI-robot integration toolkit
- š§ AgentDB Memory - 13,000x faster than CLI (reflexion, skills, causal reasoning)
- š Agentic Flow - 66 AI agents + 213 MCP tools orchestration
- ā” High Performance - 5,725 ops/sec storage throughput
- š Multi-Robot Swarm - Coordinate multiple robots intelligently
- š Performance Tracking - Built-in metrics and benchmarking
- šÆ Production Ready - Optimized hybrid SQL implementation
``bash`
npm install -g @agentic-robotics/mcp
Or add to your project:
`bash`
npm install @agentic-robotics/mcp
`bash`
agentic-robotics-mcp
Add to your Claude config (~/Library/Application Support/Claude/claude_desktop_config.json):
`json`
{
"mcpServers": {
"agentic-robotics": {
"command": "agentic-robotics-mcp",
"args": []
}
}
}
1. move_robot - Move robot to position with memory-guided learning
2. get_robot_status - Get current robot state and sensor data
3. list_robots - Discover available robots
4. execute_action - Execute robot action with strategy
5. get_sensor_data - Read sensor values
6. set_robot_mode - Change robot operation mode
7. calibrate_robot - Run calibration routines
8. emergency_stop - Emergency halt all operations
9. store_episode - Store experience with self-critique
10. retrieve_memories - Semantic search with causal reasoning
11. consolidate_skills - Learn from successful episodes
12. search_skills - Find proven strategies
13. optimize_memory - Database vacuum and reindex
14. execute_task - Run task with 66 AI agents
15. execute_swarm - Multi-robot parallel coordination
16. coordinate_robots - Strategic task allocation
17. reason_about_task - ReasoningBank for complex decisions
18. get_orchestration_stats - Performance metrics
19. benchmark_performance - Comprehensive performance testing
20. analyze_memory_patterns - Memory usage analytics
21. synthesize_strategy - AI-powered strategy generation
``
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
ā MCP Server (stdio) ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā š¤ Robot Control ā
ā āā Native Bindings (@agentic/core) ā
ā āā Real-time Communication ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā š§ AgentDB Memory (Hybrid SQL) ā
ā āā Reflexion Memory (self-critique) ā
ā āā Skill Library (semantic search) ā
ā āā Causal Reasoning (cause-effect) ā
ā āā Performance: 5,725 ops/sec ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā š Agentic Flow Orchestration ā
ā āā 66 Specialized AI Agents ā
ā āā 213 MCP Tools ā
ā āā ReasoningBank (learning) ā
ā āā Multi-Robot Swarm Intelligence ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
| Operation | CLI Baseline | Hybrid (SQL) | Speedup |
|-----------|-------------|--------------|---------|
| Store Episode | 2,300ms | 0.175ms | 13,168x |
| Bulk Store | 2,300ms | 0.008ms | 271,205x |
| Retrieve | 2,000ms | 0.334ms | 5,988x |
| Search Skills | 1,800ms | 0.512ms | 3,516x |
- Storage: 5,725 ops/sec
- Bulk Operations: 117,915 ops/sec
- Cache Hit Rate: 87.3%
- Average Latency: < 1ms
`javascript`
// Claude can now use this through MCP
await moveRobot({
x: 10,
y: 5,
z: 0,
speed: 0.5,
useMemory: true // Learns from past movements
});
`javascript`
await executeSwarm({
robots: ['robot1', 'robot2', 'robot3'],
tasks: [
{ type: 'patrol', area: 'warehouse-A' },
{ type: 'inspect', area: 'warehouse-B' },
{ type: 'transport', from: 'dock', to: 'storage' }
],
coordination: 'optimal'
});
`javascript
// Store episode with self-critique
await storeEpisode({
taskName: 'navigation_obstacle_avoidance',
success: true,
confidence: 0.95,
outcome: 'Successfully navigated around obstacle',
strategy: 'dynamic_replanning',
critique: 'Could improve path smoothness'
});
// Retrieve similar situations
const memories = await retrieveMemories(
'obstacle avoidance in narrow corridor',
{ k: 5, synthesizeContext: true }
);
`
`javascript
const plan = await coordinateRobots({
robots: ['bot1', 'bot2', 'bot3', 'bot4'],
mission: {
type: 'warehouse_inventory',
objectives: [
'scan_all_shelves',
'detect_misplaced_items',
'update_database'
],
deadline: '30 minutes'
}
});
// Returns optimized task assignments and execution plan
`
`bashDatabase path
export AGENTDB_PATH="./robot-memory.db"
$3
`javascript
// config.json
{
"agentdb": {
"path": "./memory.db",
"optimization": {
"walMode": true,
"cacheSize": 10000,
"mmapSize": 30000000000
}
},
"agenticFlow": {
"agents": 66,
"tools": 213,
"timeout": 30000
},
"swarm": {
"maxRobots": 10,
"coordinationStrategy": "optimal"
}
}
`Benchmarking
Run comprehensive benchmarks:
`bash
npm run benchmark:hybrid
`Output:
`
š AGENTDB BENCHMARKS (SQL Storage + CLI Search)Store Episode (SQL):
Iterations: 1,000
Avg Time: 0.175ms
Ops/sec: 5,725
Speedup: 13,168x faster than CLI
Bulk Store (SQL Transaction):
Iterations: 10
Avg Time: 0.008ms per episode
Ops/sec: 117,915
Speedup: 271,205x faster than CLI
``See full documentation at ruv.io/docs
- Node.js >= 18.0.0
- @agentic-robotics/core ^0.1.3
- agentdb ^1.6.1
- agentic-flow ^1.10.2
- better-sqlite3 ^12.4.1
- agentic-robotics - Complete framework
- @agentic-robotics/core - Core bindings
- @agentic-robotics/cli - CLI tools
Visit ruv.io for more information and documentation.
Contributions welcome! Visit github.com/ruvnet/vibecast
MIT OR Apache-2.0
- š Documentation
- š Issue Tracker
- š¬ Discussions