AWS SDK for JavaScript Machine Learning Client for Node.js, Browser and React Native
npm install @aws-sdk/client-machine-learningAWS SDK for JavaScript MachineLearning Client for Node.js, Browser and React Native.
Definition of the public APIs
exposed by Amazon Machine Learning
npm install @aws-sdk/client-machine-learningyarn add @aws-sdk/client-machine-learningpnpm add @aws-sdk/client-machine-learningThe AWS SDK is modulized by clients and commands.
To send a request, you only need to import the MachineLearningClient and
the commands you need, for example DescribeMLModelsCommand:
``js`
// ES5 example
const { MachineLearningClient, DescribeMLModelsCommand } = require("@aws-sdk/client-machine-learning");
`ts`
// ES6+ example
import { MachineLearningClient, DescribeMLModelsCommand } from "@aws-sdk/client-machine-learning";
To send a request, you:
- Initiate client with configuration (e.g. credentials, region).
- Initiate command with input parameters.
- Call send operation on client with command object as input.destroy()
- If you are using a custom http handler, you may call to close open connections.
`js
// a client can be shared by different commands.
const client = new MachineLearningClient({ region: "REGION" });
const params = { /* input parameters / };
const command = new DescribeMLModelsCommand(params);
`
#### Async/await
We recommend using await
operator to wait for the promise returned by send operation as follows:
`js`
// async/await.
try {
const data = await client.send(command);
// process data.
} catch (error) {
// error handling.
} finally {
// finally.
}
Async-await is clean, concise, intuitive, easy to debug and has better error handling
as compared to using Promise chains or callbacks.
#### Promises
You can also use Promise chaining
to execute send operation.
`js`
client.send(command).then(
(data) => {
// process data.
},
(error) => {
// error handling.
}
);
Promises can also be called using .catch() and .finally() as follows:
`js`
client
.send(command)
.then((data) => {
// process data.
})
.catch((error) => {
// error handling.
})
.finally(() => {
// finally.
});
#### Callbacks
We do not recommend using callbacks because of callback hell,
but they are supported by the send operation.
`js`
// callbacks.
client.send(command, (err, data) => {
// process err and data.
});
#### v2 compatible style
The client can also send requests using v2 compatible style.
However, it results in a bigger bundle size and may be dropped in next major version. More details in the blog post
on modular packages in AWS SDK for JavaScript
`ts
import * as AWS from "@aws-sdk/client-machine-learning";
const client = new AWS.MachineLearning({ region: "REGION" });
// async/await.
try {
const data = await client.describeMLModels(params);
// process data.
} catch (error) {
// error handling.
}
// Promises.
client
.describeMLModels(params)
.then((data) => {
// process data.
})
.catch((error) => {
// error handling.
});
// callbacks.
client.describeMLModels(params, (err, data) => {
// process err and data.
});
`
When the service returns an exception, the error will include the exception information,
as well as response metadata (e.g. request id).
`js`
try {
const data = await client.send(command);
// process data.
} catch (error) {
const { requestId, cfId, extendedRequestId } = error.$metadata;
console.log({ requestId, cfId, extendedRequestId });
/**
* The keys within exceptions are also parsed.
* You can access them by specifying exception names:
* if (error.name === 'SomeServiceException') {
* const value = error.specialKeyInException;
* }
*/
}
Please use these community resources for getting help.
We use the GitHub issues for tracking bugs and feature requests, but have limited bandwidth to address them.
- Visit Developer Guide
or API Reference.
- Check out the blog posts tagged with aws-sdk-js
on AWS Developer Blog.
- Ask a question on StackOverflow and tag it with aws-sdk-js.
- Join the AWS JavaScript community on gitter.
- If it turns out that you may have found a bug, please open an issue.
To test your universal JavaScript code in Node.js, browser and react-native environments,
visit our code samples repo.
This client code is generated automatically. Any modifications will be overwritten the next time the @aws-sdk/client-machine-learning` package is updated.
To contribute to client you can check our generate clients scripts.
This SDK is distributed under the
Apache License, Version 2.0,
see LICENSE for more information.
AddTags
Command API Reference / Input / Output
CreateBatchPrediction
Command API Reference / Input / Output
CreateDataSourceFromRDS
Command API Reference / Input / Output
CreateDataSourceFromRedshift
Command API Reference / Input / Output
CreateDataSourceFromS3
Command API Reference / Input / Output
CreateEvaluation
Command API Reference / Input / Output
CreateMLModel
Command API Reference / Input / Output
CreateRealtimeEndpoint
Command API Reference / Input / Output
DeleteBatchPrediction
Command API Reference / Input / Output
DeleteDataSource
Command API Reference / Input / Output
DeleteEvaluation
Command API Reference / Input / Output
DeleteMLModel
Command API Reference / Input / Output
DeleteRealtimeEndpoint
Command API Reference / Input / Output
DeleteTags
Command API Reference / Input / Output
DescribeBatchPredictions
Command API Reference / Input / Output
DescribeDataSources
Command API Reference / Input / Output
DescribeEvaluations
Command API Reference / Input / Output
DescribeMLModels
Command API Reference / Input / Output
DescribeTags
Command API Reference / Input / Output
GetBatchPrediction
Command API Reference / Input / Output
GetDataSource
Command API Reference / Input / Output
GetEvaluation
Command API Reference / Input / Output
GetMLModel
Command API Reference / Input / Output
Predict
Command API Reference / Input / Output
UpdateBatchPrediction
Command API Reference / Input / Output
UpdateDataSource
Command API Reference / Input / Output
UpdateEvaluation
Command API Reference / Input / Output
UpdateMLModel