@cutos/ai-face-detect is a JavaScript library that provides face recognition, face matching, face comparison and other functions
npm install @cutos/ai-face-detect##### Installation
npm install @cutos/ai-face-detect
##### Import Dependencies
``js`
import {Face} from '@cutos/ai-face-detect'
##### 1. Automatic Installation (Recommended)
When running npm install, the installation script will automatically download the model files and copy them into the project directory:
``
public/cutos-ai-face-models/
No additional action is required from developers. Once installation is complete, the project can be used directly.
##### 2. Manual Installation
If automatic installation fails or manual setup is preferred, follow the steps below:
(1) Locate the downloaded model files in the dependency package directory:
``
/node_modules/@cutos/ai-face-detect/cutos-ai-face-models/
(2) Copy this entire directory into the project path public/cutos-ai-face-models/.
The final directory structure should look like this:
``
public/
├── cutos-ai-face-models/ # Model file directory
│ ├── blaze_face_short_range.tflite
│ ├── vision_wasm_internal.js
│ └── vision_wasm_internal.wasm
├── config.json
├── index.html
└── thumbnail.png
Constructor, creates a face recognition service instance
`js`
const faceInstance = new Face();
Initialize the face recognition gateway service
`js`
faceInstance.init(gwClient);
- gwClient: Object, instance of the face recognition gateway service.
Detect a single face in the camera stream
`js`
faceInstance.detectSingleFace(videoElement);
- videoElement:
##### Example:
`js`
//index.html
...
//main.js
const $cam = document.querySelector('#cam')
const result = faceInstance.detectSingleFace($cam);
console.log(result)
- Example return result:
`json`
{
"face": "",
"fullFrame": "",
"score": 0.9609517455101013
}result.face
- : The detected face image.result.fullFrame
- : The original camera frame (Blob in base64).result.score
- : Confidence score (0--1), recommended above 0.9 to
consider detection successful.
Register a face image
`js`
faceInstance.register(fullFrame)fullFrame
- :Base64 formatted image
##### Example:
` js`
const id = faceInstance.register('.../Z);')
console.log(id)
- Example return result:
` json`
"f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b" //Returns ID after successful registration
Search for a registered face
`js`
faceInstance.search(fullFrame)fullFrame
- :Base64 formatted image
##### Example:
` js`
const result = faceInstance.search('.../Z);');
console.log(result)
- Example return result:
` json`
{
"id": "f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b",
"payload": {},
"score": 0.9953916239059821
}
- result.id: Matched ID.result.score
- : Matching score.
Unregister a face ID
` js`
faceInstance.unregister(id);
##### Example:
` js`
const id = faceInstance.unregister("f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b");
console.log(id)
- Example return result:
` json`
"f956ac67-0dd8-4dc4-ae5b-55f37d99bc6b" //Returns ID after successful unregistration
Compare two faces
` js`
faceInstance.compare(image1, image2);
- image1: Base64 formatted image of face 1.image2
- : Base64 formatted image of face 2.
##### Example:
` js`
const score = faceInstance.compare('...', '...');
console.log(score)
- Example return result:
` json``
0.9973043918609619 //Recommended above 0.9 to consider a successful match