DataFire integration for Psycholinguistic Text Analytics
npm install @datafire/symantoClient library for Psycholinguistic Text Analytics
bash
npm install --save @datafire/symanto
`
`js
let symanto = require('@datafire/symanto').create({
apiKeyHeader: ""
});.then(data => {
console.log(data);
});
`Description
We aim to provide the deepest understanding of people through psychology & AI
Actions
$3
Identify the purpose and writing style of a written text.Supported Languages: [
ar, de, en, es, fr, it, nl, pt, ru, tr, zh]Returned labels:
* action-seeking
* fact-oriented
* information-seeking
* self-revealing
`js
symanto.communication({}, context)
`#### Input
* input
object
* all boolean
* body PostRequest#### Output
* output PredictionResults
$3
Detect the emotions of the text.Supported Langauges: [
en, de, es]Returned labels:
* anger
* joy
* love
* sadness
* surprise
* uncategorized
`js
symanto.emotion({}, context)
`#### Input
* input
object
* all boolean
* body PostRequest#### Output
* output PredictionResults
$3
Identifies what language a text is written in. Only languages that our API supports can be analyzed.Returned labels:
* language_code of the detected language
`js
symanto.language_detection.post({}, context)
`#### Input
* input
object
* body LanguageDetectionRequest#### Output
* output LanguageDetectionResponse
$3
Predict the personality trait of author of any written text.Supported Languages: [
ar, de, en, es, fr, it, nl, pt, ru, tr, zh]Returned labels:
* emotional
* rational
`js
symanto.personality({}, context)
`#### Input
* input
object
* all boolean
* body PostRequest#### Output
* output PredictionResults
$3
Evaluate the overall tonality of the text.Supported Languages: [
en, de, es]Returned labels:
* positive
* negative
`js
symanto.sentiment({}, context)
`#### Input
* input
object
* all boolean
* body PostRequest#### Output
* output PredictionResults
$3
Extracts topics and sentiments and relates them.
`js
symanto.topic_sentiment.post({}, context)
`#### Input
* input
object
* domain string (values: Ecom, Employee): Provide analysis domain for better extraction (optional)
* body PostRequest#### Output
* output TopicSentimentResponse
Definitions
$3
* LanguageDetection object
* id string: id of the text.
* text required string: the text itself.$3
* LanguageDetectionRequest array
* items LanguageDetection$3
* LanguageDetectionResponse array
* items LanguagePredicted$3
* LanguagePredicted object
* detected_language required string: the detected language_code corresponding to the input text.
* id string: id of the post.$3
* Post object
* id string: id of the post.
* language required string: language_code of the text.
* text required string: the text to be analysed.$3
* PostPredicted object
* id string: id of the post.
* predictions required array: the list of predictions.
* items Prediction$3
* Posts array
* items Post$3
* Prediction object
* prediction required string: the predicted label.
* probability required number: the probability of the predicted label.$3
* Prediction Results array
* items PostPredicted$3
* Sentiment object
* category string
* end integer
* negationTerm string
* parentCategory string
* positive boolean
* scale number
* start integer
* text string$3
* Topic object
* category string
* end integer
* polarity number
* start integer
* text string
* topic string$3
* TopicSentiment object
* sentence string
* sentiment Sentiment
* topic Topic$3
* TopicSentimentOutput object
* id string
* language string
* sentiments array
* items Sentiment
* text string
* topicSentiments array
* items TopicSentiment
* topics array
* items Topic$3
* TopicSentimentResponse array
* items TopicSentimentOutput$3
* ValidationError object
* loc required array
* items string
* msg required string
* type required string$3
* ValidationErrors object
* detail array`