CART decision tree algorithm
[![NPM version][npm-image]][npm-url]
[![build status][travis-image]][travis-url]
[![Test coverage][codecov-image]][codecov-url]
[![npm download][download-image]][download-url]
Decision trees using CART implementation.
npm install --save ml-cart
``js
import irisDataset from 'ml-dataset-iris';
import { DecisionTreeClassifier as DTClassifier } from 'ml-cart';
var trainingSet = irisDataset.getNumbers();
var predictions = irisDataset
.getClasses()
.map((elem) => irisDataset.getDistinctClasses().indexOf(elem));
var options = {
gainFunction: 'gini',
maxDepth: 10,
minNumSamples: 3
};
var classifier = new DTClassifier(options);
classifier.train(trainingSet, predictions);
var result = classifier.predict(trainingSet);
`
`js
import { DecisionTreeRegression as DTRegression } from 'ml-cart';
var x = new Array(100);
var y = new Array(100);
var val = 0.0;
for (var i = 0; i < x.length; ++i) {
x[i] = val;
y[i] = Math.sin(x[i]);
val += 0.01;
}
var reg = new DTRegression();
reg.train(x, y);
var estimations = reg.predict(x);
``
[npm-image]: https://img.shields.io/npm/v/ml-cart.svg?style=flat-square
[npm-url]: https://npmjs.org/package/ml-cart
[travis-image]: https://img.shields.io/travis/mljs/decision-tree-cart/master.svg?style=flat-square
[travis-url]: https://travis-ci.org/mljs/decision-tree-cart
[codecov-image]: https://img.shields.io/codecov/c/github/mljs/decision-tree-cart.svg?style=flat-square
[codecov-url]: https://codecov.io/github/mljs/decision-tree-cart
[download-image]: https://img.shields.io/npm/dm/ml-cart.svg?style=flat-square
[download-url]: https://npmjs.org/package/ml-cart