[](https://www.npmjs.com/package/@google/genai) [](https://www.npmjs.com/package/@google/genai)
npm install @google/genai

----------------------
Documentation: https://googleapis.github.io/js-genai/
----------------------
The Google Gen AI JavaScript SDK is designed for
TypeScript and JavaScript developers to build applications powered by Gemini. The SDK
supports both the Gemini Developer API
and Vertex AI.
The Google Gen AI SDK is designed to work with Gemini 2.0+ features.
> [!CAUTION]
> API Key Security: Avoid exposing API keys in client-side code.
> Use server-side implementations in production environments.
Generative models are often unaware of recent API and SDK updates and may suggest outdated or legacy code.
We recommend using our Code Generation instructions codegen_instructions.md when generating Google Gen AI SDK code to guide your model towards using the more recent SDK features. Copy and paste the instructions into your development environment to provide the model with the necessary context.
1. Node.js version 20 or later
``sh`
gcloud auth application-default login
A list of accepted authentication options are listed in GoogleAuthOptions interface of google-auth-library-node.js GitHub repo.
To install the SDK, run the following command:
`shell`
npm install @google/genai
The simplest way to get started is to use an API key from
Google AI Studio:
`typescript
import {GoogleGenAI} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
async function main() {
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Why is the sky blue?',
});
console.log(response.text);
}
main();
`
The Google Gen AI SDK provides support for both the
Google AI Studio and
Vertex AI
implementations of the Gemini API.
For server-side applications, initialize using an API key, which can
be acquired from Google AI Studio:
`typescript`
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({apiKey: 'GEMINI_API_KEY'});
#### Browser
> [!CAUTION]
> API Key Security: Avoid exposing API keys in client-side code.
> Use server-side implementations in production environments.
In the browser the initialization code is identical:
`typescript`
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({apiKey: 'GEMINI_API_KEY'});
Sample code for VertexAI initialization:
`typescript
import { GoogleGenAI } from '@google/genai';
const ai = new GoogleGenAI({
vertexai: true,
project: 'your_project',
location: 'your_location',
});
`
For NodeJS environments, you can create a client by configuring the necessary
environment variables. Configuration setup instructions depends on whether
you're using the Gemini Developer API or the Gemini API in Vertex AI.
Gemini Developer API: Set GOOGLE_API_KEY as shown below:
`bash`
export GOOGLE_API_KEY='your-api-key'
Gemini API on Vertex AI: Set GOOGLE_GENAI_USE_VERTEXAI,GOOGLE_CLOUD_PROJECT and GOOGLE_CLOUD_LOCATION, as shown below:
`bash`
export GOOGLE_GENAI_USE_VERTEXAI=true
export GOOGLE_CLOUD_PROJECT='your-project-id'
export GOOGLE_CLOUD_LOCATION='us-central1'
`typescript
import {GoogleGenAI} from '@google/genai';
const ai = new GoogleGenAI();
`
By default, the SDK uses the beta API endpoints provided by Google to support
preview features in the APIs. The stable API endpoints can be selected by
setting the API version to v1.
To set the API version use apiVersion. For example, to set the API version tov1 for Vertex AI:
`typescript`
const ai = new GoogleGenAI({
vertexai: true,
project: 'your_project',
location: 'your_location',
apiVersion: 'v1'
});
To set the API version to v1alpha for the Gemini Developer API:
`typescript`
const ai = new GoogleGenAI({
apiKey: 'GEMINI_API_KEY',
apiVersion: 'v1alpha'
});
All API features are accessed through an instance of the GoogleGenAI classes.
The submodules bundle together related API methods:
- ai.models:
Use models to query models (generateContent, generateImages, ...), orai.caches
examine their metadata.
- :caches
Create and manage to reduce costs when repeatedly using the sameai.chats
large prompt prefix.
- :chat
Create local stateful objects to simplify multi turn interactions.ai.files
- :files
Upload to the API and reference them in your prompts.ai.live
This reduces bandwidth if you use a file many times, and handles files too
large to fit inline with your prompt.
- :live
Start a session for real time interaction, allows text + audio + video
input, and text or audio output.
More samples can be found in the
github samples directory.
For quicker, more responsive API interactions use the generateContentStream
method which yields chunks as they're generated:
`typescript
import {GoogleGenAI} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
async function main() {
const response = await ai.models.generateContentStream({
model: 'gemini-2.5-flash',
contents: 'Write a 100-word poem.',
});
for await (const chunk of response) {
console.log(chunk.text);
}
}
main();
`
To let Gemini to interact with external systems, you can provide
functionDeclaration objects as tools. To use these tools it's a 4 step
1. Declare the function name, description, and parametersJsonSchema
2. Call generateContent with function calling enabled
3. Use the returned FunctionCall parameters to call your actual function
3. **Send the result back to the model (with history, easier in ai.chat)FunctionResponse
as a **
`typescript
import {GoogleGenAI, FunctionCallingConfigMode, FunctionDeclaration, Type} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
async function main() {
const controlLightDeclaration: FunctionDeclaration = {
name: 'controlLight',
parametersJsonSchema: {
type: 'object',
properties:{
brightness: {
type:'number',
},
colorTemperature: {
type:'string',
},
},
required: ['brightness', 'colorTemperature'],
},
};
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Dim the lights so the room feels cozy and warm.',
config: {
toolConfig: {
functionCallingConfig: {
// Force it to call any function
mode: FunctionCallingConfigMode.ANY,
allowedFunctionNames: ['controlLight'],
}
},
tools: [{functionDeclarations: [controlLightDeclaration]}]
}
});
console.log(response.functionCalls);
}
main();
`
#### Model Context Protocol (MCP) support (experimental)
Built-in MCP support is an
experimental feature. You can pass a local MCP server as a tool directly.
`javascript
import { GoogleGenAI, FunctionCallingConfigMode , mcpToTool} from '@google/genai';
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
// Create server parameters for stdio connection
const serverParams = new StdioClientTransport({
command: "npx", // Executable
args: ["-y", "@philschmid/weather-mcp"] // MCP Server
});
const client = new Client(
{
name: "example-client",
version: "1.0.0"
}
);
// Configure the client
const ai = new GoogleGenAI({});
// Initialize the connection between client and server
await client.connect(serverParams);
// Send request to the model with MCP tools
const response = await ai.models.generateContent({
model: "gemini-2.5-flash",
contents: What is the weather in London in ${new Date().toLocaleDateString()}?,
config: {
tools: [mcpToTool(client)], // uses the session, will automatically call the tool using automatic function calling
},
});
console.log(response.text);
// Close the connection
await client.close();
`
#### How to structure contents argument for generateContent
The SDK allows you to specify the following types in the contents parameter:
#### Content
- Content: The SDK will wrap the singular Content instance in an array whichContent[]
contains only the given content instance
- : No transformation happens
#### Part
Parts will be aggregated on a singular Content, with role 'user'.
- Part | string: The SDK will wrap the string or Part in a ContentPart[] | string[]
instance with role 'user'.
- : The SDK will wrap the full provided list into a singleContent with role 'user'.
_NOTE:_ This doesn't apply to FunctionCall and FunctionResponse parts,Content[]
if you are specifying those, you need to explicitly provide the full structure making it explicit which Parts are 'spoken' by the model,
or the user. The SDK will throw an exception if you try this.
To handle errors raised by the API, the SDK provides this ApiError class.
`typescript
import {GoogleGenAI} from '@google/genai';
const GEMINI_API_KEY = process.env.GEMINI_API_KEY;
const ai = new GoogleGenAI({apiKey: GEMINI_API_KEY});
async function main() {
await ai.models.generateContent({
model: 'non-existent-model',
contents: 'Write a 100-word poem.',
}).catch((e) => {
console.error('error name: ', e.name);
console.error('error message: ', e.message);
console.error('error status: ', e.status);
});
}
main();
`
> Warning: The Interactions API is in Beta. This is a preview of an
experimental feature. Features and schemas are subject to breaking changes.
The Interactions API is a unified interface for interacting with Gemini models
and agents. It simplifies state management, tool orchestration, and long-running
tasks.
See the documentation site
for more details.
`typescript
const interaction = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: 'Hello, how are you?',
});
console.debug(interaction);
`
The Interactions API supports server-side state management. You can continue a
conversation by referencing the previous_interaction_id.
`typescript
// 1. First turn
const interaction1 = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: 'Hi, my name is Amir.',
});
console.debug(interaction1);
// 2. Second turn (passing previous_interaction_id)
const interaction2 = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: 'What is my name?',
previous_interaction_id: interaction1.id,
});
console.debug(interaction2);
`
You can use specialized agents like deep-research-pro-preview-12-2025 for
complex tasks.
`typescript
function sleep(ms: number): Promise
return new Promise(resolve => setTimeout(resolve, ms));
}
// 1. Start the Deep Research Agent
const initialInteraction = await ai.interactions.create({
input:
'Research the history of the Google TPUs with a focus on 2025 and 2026.',
agent: 'deep-research-pro-preview-12-2025',
background: true,
});
console.log(Research started. Interaction ID: ${initialInteraction.id});
// 2. Poll for results
while (true) {
const interaction = await ai.interactions.get(initialInteraction.id);
console.log(Status: ${interaction.status});
if (interaction.status === 'completed') {
console.debug('\nFinal Report:\n', interaction.outputs);
break;
} else if (['failed', 'cancelled'].includes(interaction.status)) {
console.log(Failed with status: ${interaction.status});
break;
}
await sleep(10000); // Sleep for 10 seconds
}
`
You can provide multimodal data (text, images, audio, etc.) in the input list.
`typescript
import base64
// Assuming you have a base64 string
// const base64Image = ...;
const interaction = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: [
{ type: 'text', text: 'Describe the image.' },
{ type: 'image', data: base64Image, mime_type: 'image/png' },
],
});
console.debug(interaction);
`
You can define custom functions for the model to use. The Interactions API
handles the tool selection, and you provide the execution result back to the
model.
`typescriptThe weather in ${location} is sunny.
// 1. Define the tool
const getWeather = (location: string) => {
/ Gets the weather for a given location. /
return ;
};
// 2. Send the request with tools
let interaction = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: 'What is the weather in Mountain View, CA?',
tools: [
{
type: 'function',
name: 'get_weather',
description: 'Gets the weather for a given location.',
parameters: {
type: 'object',
properties: {
location: {
type: 'string',
description: 'The city and state, e.g. San Francisco, CA',
},
},
required: ['location'],
},
},
],
});
// 3. Handle the tool call
for (const output of interaction.outputs!) {
if (output.type === 'function_call') {
console.log(
Tool Call: ${output.name}(${JSON.stringify(output.arguments)}));
// Execute your actual function here
// Note: ensure arguments match your function signature
const result = getWeather(JSON.stringify(output.arguments.location));
// Send result back to the model
interaction = await ai.interactions.create({
model: 'gemini-2.5-flash',
previous_interaction_id: interaction.id,
input: [
{
type: 'function_result',
name: output.name,
call_id: output.id,
result: result,
},
],
});
console.debug(Response: ${JSON.stringify(interaction)});
}
}
`
#### Grounding with Google Search
`typescript
const interaction = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: 'Who won the last Super Bowl',
tools: [{ type: 'google_search' }],
});
console.debug(interaction);
`
#### Code Execution
`typescript
const interaction = await ai.interactions.create({
model: 'gemini-2.5-flash',
input: 'Calculate the 50th Fibonacci number.',
tools: [{ type: 'code_execution' }],
});
console.debug(interaction);
`
The Interactions API can generate multimodal outputs, such as images. You must
specify the response_modalities.
`typescript
import * as fs from 'fs';
const interaction = await ai.interactions.create({
model: 'gemini-3-pro-image-preview',
input: 'Generate an image of a futuristic city.',
response_modalities: ['image'],
});
for (const output of interaction.outputs!) {
if (output.type === 'image') {
console.log(Generated image with mime_type: ${output.mime_type});
// Save the image
fs.writeFileSync(
'generated_city.png', Buffer.from(output.data!, 'base64'));
}
}
`
) is Google Deepmind’s "vanilla" SDK for its generative
AI offerings, and is where Google Deepmind adds new AI features.Models hosted either on the Vertex AI platform or the Gemini Developer platform are accessible through this SDK.
Other SDKs may be offering additional AI frameworks on top of this SDK, or may
be targeting specific project environments (like Firebase).
The
@google/generative_language and @google-cloud/vertexai` SDKs are previous