A CLI tool for ingesting data from files into a GraphQL API. Supports CSV, JSON, JSONL, and YAML file formats.
npm install @jackchuka/gql-ingest

A TypeScript library and CLI tool that reads data from multiple formats (CSV, JSON, YAML, JSONL) and ingests it into GraphQL APIs through configurable mutations.
- ✅ Supported data formats: CSV, JSON, YAML, JSONL
- ✅ Complex nested data support for sophisticated GraphQL mutations
- ✅ External GraphQL mutation definitions (separate .graphql files)
- ✅ Flexible data-to-GraphQL variable mapping via JSON configuration
- ✅ Configurable GraphQL endpoint and headers
- ✅ Parallel processing with dependency management
- ✅ Entity-level and row-level concurrency control
- ✅ Retry capabilities with exponential backoff and configurable error handling
- ✅ Comprehensive metrics and progress tracking
- ✅ Event-based progress monitoring with real-time callbacks
- ✅ Cancellation support via AbortController pattern
``bashInstall globally
npm install -g @jackchuka/gql-ingest
$3
`bash
git clone https://github.com/jackchuka/gql-ingest.git
cd gql-ingest
pnpm install
pnpm run build
`Quick Start
Initialize a new configuration and start ingesting data in minutes:
`bash
Create a new configuration directory
gql-ingest init ./my-configAdd a new entity
gql-ingest add users -p ./my-config -f json --fields "id,name,email"Run ingestion
gql-ingest -e https://your-api.com/graphql -c ./my-config
`Usage
$3
#### Initialize Configuration
Create a new configuration directory with example files:
`bash
gql-ingest init [path] [options]Options:
--no-example Skip creating example entity files
--no-config Skip creating config.yaml
-f, --force Overwrite existing files
-q, --quiet Suppress output
`This creates:
-
data/ - Data files directory
- graphql/ - GraphQL mutation files
- mappings/ - Mapping configuration files
- config.yaml - Processing configuration
- Example entity files (by default)#### Add Entity
Add a new entity to an existing configuration:
`bash
gql-ingest add [options]Options:
-p, --path Config directory path (default: current directory)
-f, --format Data format (csv, json, yaml, jsonl)
--fields Comma-separated field names
--mutation GraphQL mutation name
--no-interactive Skip prompts, use defaults only
-q, --quiet Suppress output
`Interactive mode prompts for format, fields, and mutation name. Use
--no-interactive with flags for CI/CD.#### Run Ingestion
Ingest data from configuration into GraphQL API:
`bash
gql-ingest [options]Options:
-e, --endpoint GraphQL endpoint URL (required)
-c, --config Path to configuration directory (required)
-n, --entities Comma-separated list of entities to process
-h, --headers JSON string of headers
-f, --format Override data format detection
-q, --quiet Suppress output
`$3
`bash
Basic usage
gql-ingest \
-e https://your-graphql-api.com/graphql \
-c ./examples/demoWith authentication headers
gql-ingest \
-e https://your-graphql-api.com/graphql \
-c ./examples/demo \
-h '{"Authorization": "Bearer YOUR_TOKEN"}'Process specific entities only
gql-ingest \
-e https://your-graphql-api.com/graphql \
-c ./examples/demo \
-n users,products
`$3
GQL Ingest provides a full programmatic API for integration into your Node.js applications.
#### Installation for API Usage
`bash
npm install @jackchuka/gql-ingest
`#### Basic API Usage
`typescript
import { GQLIngest, createConsoleLogger } from "@jackchuka/gql-ingest";// Initialize the client
const client = new GQLIngest({
endpoint: "https://your-graphql-api.com/graphql",
headers: {
Authorization: "Bearer YOUR_TOKEN",
},
logger: createConsoleLogger({ prefix: "my-app" }), // Optional: enable logging with prefix
});
// Ingest all data from a configuration
const result = await client.ingest("./config");
// Check if ingestion was successful
if (result.success) {
console.log("Ingestion completed successfully");
console.log("Metrics:", result.metrics);
} else {
console.error("Ingestion failed:", result.errors);
}
`#### Processing Specific Entities
`typescript
// Process only specific entities
const result = await client.ingestEntities("./config", ["users", "products"]);// Or using the ingest method with options
const result = await client.ingest("./config", {
entities: ["users", "products"],
format: "csv", // Optional: override format detection
});
`#### Advanced API Usage
For more control, you can access the underlying components directly:
`typescript
import {
GraphQLClientWrapper,
DataMapper,
DependencyResolver,
MetricsCollector,
loadConfig,
createConsoleLogger,
} from "@jackchuka/gql-ingest";// Create your own custom workflow
const logger = createConsoleLogger();
const metrics = new MetricsCollector();
const client = new GraphQLClientWrapper(endpoint, headers, metrics, logger);
const mapper = new DataMapper(client, basePath, metrics, logger);
// Load configuration
const config = loadConfig("./config");
// Process entities with custom logic
// ... your custom implementation
`#### API Methods
GQLIngest Class Methods:
-
constructor(options: GQLIngestOptions) - Initialize the client
- ingest(configPath: string, options?: IngestOptions) - Ingest data from a configuration
- ingestEntities(configPath: string, entities: string[]) - Process specific entities
- getMetrics() - Get current processing metrics
- getMetricsSummary() - Get formatted metrics summary
- setLogger(logger: Logger) - Set custom logger
- setHeaders(headers: Record - Update request headers
- cancel(reason?: string) - Cancel in-progress ingestion
- processing - Property indicating if ingestion is in progress#### Event-Based Progress Monitoring
GQLIngest extends EventEmitter, enabling real-time progress tracking and cancellation:
`typescript
import { GQLIngest } from "@jackchuka/gql-ingest";const client = new GQLIngest({
endpoint: "https://your-api.com/graphql",
eventOptions: {
emitRowEvents: true, // Emit events for each row
emitProgressEvents: true, // Emit periodic progress
progressInterval: 1000, // Progress every 1 second
},
});
// Listen for events
client.on("started", (p) => console.log(
Starting ${p.totalEntities} entities));
client.on("progress", (p) => console.log(${p.progressPercent.toFixed(1)}% complete));
client.on("entityStart", (p) => console.log(Processing ${p.entityName}));
client.on("entityComplete", (p) =>
console.log(${p.entityName}: ${p.metrics.successfulRows} rows),
);
client.on("rowSuccess", (p) => console.log(Row ${p.rowIndex} OK));
client.on("rowFailure", (p) => console.error(Row ${p.rowIndex} failed: ${p.error.message}));
client.on("finished", (p) => console.log(Done in ${p.durationMs}ms));
client.on("errored", (p) => console.error(Error: ${p.error.message}));
client.on("cancelled", (p) => console.log(Cancelled: ${p.reason}));// Handle graceful shutdown
process.on("SIGINT", () => client.cancel("User interrupted"));
await client.ingest("./config");
`Available Events:
| Event | When Emitted | Key Payload Fields |
| ---------------- | ------------------------ | ------------------------------------------------- |
|
started | Ingestion begins | configPath, entityNames, totalWaves |
| progress | Periodic interval | progressPercent, successfulRows, failedRows |
| entityStart | Entity processing begins | entityName, totalRows, waveIndex |
| entityComplete | Entity processing ends | entityName, metrics, success |
| rowSuccess | Row mutation succeeds | entityName, rowIndex, row, result |
| rowFailure | Row mutation fails | entityName, rowIndex, error |
| cancelled | Processing cancelled | reason, metrics, elapsedMs |
| finished | Processing completes | metrics, durationMs, allSuccessful |
| errored | Fatal error occurs | error, metrics, elapsedMs |#### Cancellation Support
Cancel in-progress ingestion using the
cancel() method or external AbortController:`typescript
// Method 1: Using cancel()
const client = new GQLIngest({ endpoint: "..." });
process.on("SIGINT", () => client.cancel("User interrupted"));
await client.ingest("./config");// Method 2: Using external AbortController
const controller = new AbortController();
setTimeout(() => controller.abort("Timeout"), 60000);
await client.ingest("./config", { signal: controller.signal });
`#### TypeScript Support
Full TypeScript support is included with comprehensive type definitions:
`typescript
import type {
GQLIngestOptions,
IngestOptions,
IngestResult,
ProcessingMetrics,
EntityMetrics,
// Event types
EventOptions,
StartedEventPayload,
ProgressEventPayload,
EntityStartEventPayload,
EntityCompleteEventPayload,
RowSuccessEventPayload,
RowFailureEventPayload,
CancelledEventPayload,
FinishedEventPayload,
ErroredEventPayload,
} from "@jackchuka/gql-ingest";
`Parallel Processing 🚀
GQL Ingest supports advanced parallel processing with dependency management for high-performance data ingestion:
$3
- Entity-level parallelism: Process multiple entities (users, products, orders) concurrently
- Row-level parallelism: Process multiple CSV rows within an entity concurrently
- Dependency management: Ensure entities process in the correct order (e.g., users before orders)
- Smart batching: Control exactly how many entities/rows process simultaneously
- Real-time metrics: Track progress, success rates, and performance
$3
`yaml
config.yaml - Add to your configuration directory
parallelProcessing:
concurrency: 10 # Process up to 10 CSV rows per entity concurrently
entityConcurrency: 3 # Process up to 3 entities simultaneously
preserveRowOrder: false # Allow rows to complete out of order for speedDefine dependencies between entities
entityDependencies:
products: ["users"] # Products must wait for users to complete
orders: ["products"] # Orders must wait for products to complete
`Performance Impact: This configuration can process data 10-50x faster than sequential processing, depending on your GraphQL API's capabilities.
👉 Full Parallel Processing Guide - Detailed configuration options, performance tuning, and examples.
Retry Capabilities 🔄
GQL Ingest includes robust retry functionality to handle transient failures and improve reliability:
$3
- Automatic retries: Failed GraphQL mutations are retried automatically
- Exponential backoff: Intelligent delay increases between retry attempts
- Jitter: Randomization prevents thundering herd problems
- Configurable error codes: Control which HTTP status codes trigger retries
- Per-entity overrides: Different retry settings for different entities
- Metrics tracking: Monitor retry success rates and attempt counts
$3
`yaml
config.yaml - Add to your configuration directory
retry:
maxAttempts: 5 # Retry up to 5 times (default: 3)
baseDelay: 2000 # Start with 2s delay (default: 1000ms)
maxDelay: 60000 # Cap delays at 60s (default: 30000ms)
exponentialBackoff: true # Double delay each retry (default: true)
retryableStatusCodes: # Which HTTP errors to retry (defaults shown)
- 408 # Request Timeout
- 429 # Too Many Requests
- 500 # Internal Server Error
- 502 # Bad Gateway
- 503 # Service Unavailable
- 504 # Gateway TimeoutPer-entity retry overrides
entityConfig:
critical-orders:
retry:
maxAttempts: 10 # More retries for critical data
baseDelay: 500 # Faster initial retry
`Reliability Impact: Retry capabilities can improve success rates from 95% to 99.9%+ for APIs with transient failures.
Selective Entity Processing
The
--entities flag allows you to process specific entities instead of all discovered mappings:- Process multiple entities:
--entities users,products,orders
- Process a single entity: --entities items
- Entities are processed in dependency order automatically
- Missing dependencies will trigger a warning but not prevent executionNote: When using
--entities with entity dependencies defined in config.yaml, the tool will warn you about any missing dependencies but will still attempt to process the selected entities. Ensure dependent data exists in your GraphQL API before processing entities with unmet dependencies.Configuration
The
--config flag points to a configuration directory containing these necessary files:-
mappings/ - JSON files that map CSV columns to GraphQL variables
- config.yaml - _(Optional)_ Parallel processing and dependency configurationEach entity has three corresponding files across these directories with matching names.
$3
examples/demo/mappings/items.json:
`json
{
"dataFile": "data/items.csv",
"dataFormat": "csv",
"graphqlFile": "graphql/items.graphql",
"mapping": {
"name": "item_name",
"sku": "item_sku"
}
}
`examples/demo/data/items.csv:
`csv
item_name,item_sku
Item1,item-1-sku
Item2,item-2-sku
`examples/demo/graphql/items.graphql:
`graphql
mutation CreateItem($name: String!, $sku: String!) {
createItem(input: { name: $name, sku: $sku }) {
id
name
sku
}
}
`examples/demo/config.yaml _(Optional - for parallel processing and retry configuration)_:
`yaml
Parallel processing configuration
parallelProcessing:
concurrency: 5 # Process 5 rows per entity concurrently
entityConcurrency: 2 # Process 2 entities simultaneously
preserveRowOrder: false # Allow faster out-of-order completionGlobal retry configuration
retry:
maxAttempts: 3 # Retry failed requests up to 3 times
baseDelay: 1000 # Start with 1s delay between retries
exponentialBackoff: true # Double delay each retryEntity dependencies
entityDependencies:
items: ["users"] # Items depend on users being processed firstPer-entity overrides (optional)
entityConfig:
users:
retry:
maxAttempts: 5 # More retries for user creation
items:
concurrency: 10 # Higher concurrency for items
`Supported Data Formats 📄
GQL Ingest now supports multiple data formats beyond CSV for more flexible data ingestion, especially for complex nested GraphQL mutations:
$3
- CSV - Traditional flat file format
- JSON - Perfect for nested/complex data structures
- YAML - Human-friendly alternative to JSON
- JSONL - JSON Lines format for streaming large datasets
$3
The tool automatically detects the format based on file extension, or you can specify it explicitly:
`bash
Auto-detect from mapping configuration
gql-ingest --endpoint --config ./configForce specific format
gql-ingest --endpoint --config ./config --format json
`$3
#### Direct Mapping (Entire Object)
For complex GraphQL mutations with nested input types, you can map the entire data object:
data/products.json:
`json
[
{
"name": "Premium T-Shirt",
"type": "PHYSICAL",
"options": [
{
"name": "Color",
"values": ["Red", "Blue", "Green"]
},
{
"name": "Size",
"values": ["S", "M", "L", "XL"]
}
],
"variants": [
{
"name": "Red Small",
"sku": "TS-RED-S",
"optionMappings": [
{ "name": "Color", "value": "Red" },
{ "name": "Size", "value": "S" }
]
}
]
}
]
`mappings/products.json:
`json
{
"dataFile": "data/products.json",
"dataFormat": "json",
"graphqlFile": "graphql/newProduct.graphql",
"mapping": {
"input": "$" // Map entire object to input variable
}
}
`#### Path-Based Mapping
For transforming flat JSON into nested structures:
data/products-flat.json:
`json
[
{
"product_name": "Notebook",
"product_type": "PHYSICAL",
"brand": "ACME"
}
]
`mappings/products-flat.json:
`json
{
"dataFile": "data/products-flat.json",
"graphqlFile": "graphql/newProduct.graphql",
"mapping": {
"input": {
"name": "$.product_name",
"type": "$.product_type",
"brandCode": "$.brand"
}
}
}
`$3
YAML provides a more readable alternative:
data/products.yaml:
`yaml
- name: Premium T-Shirt
type: PHYSICAL
options:
- name: Color
values: [Red, Blue, Green]
- name: Size
values: [S, M, L, XL]
variants:
- name: Red Small
sku: TS-RED-S
optionMappings:
- name: Color
value: Red
- name: Size
value: S
`Development
$3
`bash
pnpm run build # Build CLI bundle with esbuild
pnpm run build:types # Generate TypeScript declarations
pnpm run build:all # Build bundle + types
pnpm run dev # Run in development mode
pnpm run test # Run test suite
`How It Works
1. Discovery: The tool scans the
mappings/ directory for .json files
2. Dependency Resolution: Analyzes entityDependencies to create execution waves
3. Parallel Processing: For each dependency wave:
- Processes up to entityConcurrency entities simultaneously
- Within each entity, processes up to concurrency` CSV rows concurrentlyMIT