MCP server for semantic search using local Qdrant and Ollama (default) with support for OpenAI, Cohere, and Voyage AI
npm install @mhalder/qdrant-mcp-server

A Model Context Protocol (MCP) server providing semantic search capabilities using Qdrant vector database with multiple embedding providers.
- Zero Setup: Works out of the box with Ollama - no API keys required
- Privacy-First: Local embeddings and vector storage - data never leaves your machine
- Code Vectorization: Intelligent codebase indexing with AST-aware chunking and semantic code search
- Git History Search: Index commit history for semantic search over past changes, fixes, and patterns
- Advanced Search: Contextual search (code + git with correlations) and federated search across multiple repositories
- Multiple Providers: Ollama (default), OpenAI, Cohere, and Voyage AI
- Hybrid Search: Combine semantic and keyword search for better results
- Semantic Search: Natural language search with metadata filtering
- Incremental Indexing: Efficient updates - only re-index changed files
- Configurable Prompts: Create custom prompts for guided workflows without code changes
- Rate Limiting: Intelligent throttling with exponential backoff
- Full CRUD: Create, search, and manage collections and documents
- Structured Logging: JSON logging via Pino with configurable log levels
- Flexible Deployment: Run locally (stdio) or as a remote HTTP server
- API Key Authentication: Connect to secured Qdrant instances (Qdrant Cloud, self-hosted with API keys)
- Node.js 22.x or 24.x
- Podman or Docker with Compose support
``bashClone and install
git clone https://github.com/mhalder/qdrant-mcp-server.git
cd qdrant-mcp-server
$3
#### Local Setup (stdio transport)
`bash
claude mcp add --transport stdio qdrant -- node /path/to/qdrant-mcp-server/build/index.js
`Or add to
~/.claude.json:`json
{
"mcpServers": {
"qdrant": {
"type": "stdio",
"command": "node",
"args": ["/path/to/qdrant-mcp-server/build/index.js"]
}
}
}
`For Qdrant Cloud or secured instances, add
--env QDRANT_API_KEY=your-key or set in env config.Try it:
`
Create a collection called "notes" and add a document about machine learning
`Enable example prompts: Copy
prompts.example.json to prompts.json and restart. Use /prompt to list available prompts.#### Remote Setup (HTTP transport)
> ⚠️ Security Warning: When deploying the HTTP transport in production:
>
> - Always run behind a reverse proxy (nginx, Caddy) with HTTPS
> - Implement authentication/authorization at the proxy level
> - Use firewalls to restrict access to trusted networks
> - Never expose directly to the public internet without protection
> - Consider implementing rate limiting at the proxy level
> - Monitor server logs for suspicious activity
Start the server:
`bash
TRANSPORT_MODE=http HTTP_PORT=3000 node build/index.js
`Option 1: Using
claude mcp add`bash
claude mcp add --transport http qdrant http://your-server:3000/mcp
`Option 2: Add to
~/.claude.json`json
{
"mcpServers": {
"qdrant": {
"type": "http",
"url": "http://your-server:3000/mcp"
}
}
}
`Using a different provider:
`json
"env": {
"EMBEDDING_PROVIDER": "openai", // or "cohere", "voyage"
"OPENAI_API_KEY": "sk-...", // provider-specific API key
"QDRANT_URL": "http://localhost:6333"
}
`Restart after making changes.
See Advanced Configuration section below for all options.
Tools
$3
| Tool | Description |
| --------------------- | -------------------------------------------------------------------- |
|
create_collection | Create collection with specified distance metric (Cosine/Euclid/Dot) |
| list_collections | List all collections |
| get_collection_info | Get collection details and statistics |
| delete_collection | Delete collection and all documents |$3
| Tool | Description |
| ------------------ | ----------------------------------------------------------------------------- |
|
add_documents | Add documents with automatic embedding (supports string/number IDs, metadata) |
| semantic_search | Natural language search with optional metadata filtering |
| hybrid_search | Hybrid search combining semantic and keyword (BM25) search with RRF |
| delete_documents | Delete specific documents by ID |$3
| Tool | Description |
| ------------------ | -------------------------------------------------------------------------- |
|
index_codebase | Index a codebase for semantic code search with AST-aware chunking |
| search_code | Search indexed codebase using natural language queries |
| reindex_changes | Incrementally re-index only changed files (detects added/modified/deleted) |
| get_index_status | Get indexing status and statistics for a codebase |
| clear_index | Delete all indexed data for a codebase |$3
| Tool | Description |
| ---------------------- | ------------------------------------------------------------------------ |
|
index_git_history | Index git commit history for semantic search over past changes and fixes |
| search_git_history | Search indexed git history using natural language queries |
| index_new_commits | Incrementally index only new commits since last indexing |
| get_git_index_status | Get indexing status and statistics for a repository's git history |
| clear_git_index | Delete all indexed git history data for a repository |$3
| Tool | Description |
| ------------------- | ----------------------------------------------------------------------------- |
|
contextual_search | Combined code + git history search with file-commit correlations |
| federated_search | Search across multiple repositories with Reciprocal Rank Fusion (RRF) ranking |$3
-
qdrant://collections - List all collections
- qdrant://collection/{name} - Collection detailsConfigurable Prompts
Create custom prompts tailored to your specific use cases without modifying code. Prompts provide guided workflows for common tasks.
Note: By default, the server looks for
prompts.json in the project root directory. If the file exists, prompts are automatically loaded. You can specify a custom path using the PROMPTS_CONFIG_FILE environment variable.$3
1. Create a prompts configuration file (e.g.,
prompts.json in the project root):prompts.example.json for example configurations you can copy and customize.2. Configure the server (optional - only needed for custom path):
If you place
prompts.json in the project root, no additional configuration is needed. To use a custom path:`json
{
"mcpServers": {
"qdrant": {
"command": "node",
"args": ["/path/to/qdrant-mcp-server/build/index.js"],
"env": {
"QDRANT_URL": "http://localhost:6333",
"PROMPTS_CONFIG_FILE": "/custom/path/to/prompts.json"
}
}
}
}
`3. Use prompts in your AI assistant:
Claude Code:
`bash
/mcp__qdrant__find_similar_docs papers "neural networks" 10
`VSCode:
`bash
/mcp.qdrant.find_similar_docs papers "neural networks" 10
`$3
prompts.example.json for ready-to-use prompts including:-
setup_rag_collection - Create RAG-optimized collections
- analyze_and_optimize - Collection insights and recommendations
- compare_search_strategies - Semantic vs hybrid search comparison
- migrate_to_hybrid - Collection migration guide
- debug_search_quality - Troubleshoot poor search results
- build_knowledge_base - Structured documentation with metadata
- index_git_history - Index repository commit history for semantic search
- search_project_history - Search git history to understand feature implementations
- investigate_code_with_history - Deep dive into code with contextual search
- cross_repo_search - Search patterns across multiple repositories
- trace_feature_evolution - Track how features evolved over time
- security_audit_search - Find security-related code and fixes$3
Templates use
{{variable}} placeholders:- Required arguments must be provided
- Optional arguments use defaults if not specified
- Unknown variables are left as-is in the output
Code Vectorization
Intelligently index and search your codebase using semantic code search. Perfect for AI-assisted development, code exploration, and understanding large codebases.
$3
- AST-Aware Chunking: Intelligent code splitting at function/class boundaries using tree-sitter
- Multi-Language Support: 35+ file types including TypeScript, Python, Java, Go, Rust, C++, and more
- Incremental Updates: Only re-index changed files for fast updates
- Smart Ignore Patterns: Respects .gitignore, .dockerignore, and custom .contextignore files
- Semantic Search: Natural language queries to find relevant code
- Metadata Filtering: Filter by file type, path patterns, or language
- Local-First: All processing happens locally - your code never leaves your machine
$3
1. Index your codebase:
`bash
Via Claude Code MCP tool
/mcp__qdrant__index_codebase /path/to/your/project
`2. Search your code:
`bash
Natural language search
/mcp__qdrant__search_code /path/to/your/project "authentication middleware"Filter by file type
/mcp__qdrant__search_code /path/to/your/project "database schema" --fileTypes .ts,.jsFilter by path pattern
/mcp__qdrant__search_code /path/to/your/project "API endpoints" --pathPattern src/api/**
`3. Update after changes:
`bash
Incrementally re-index only changed files
/mcp__qdrant__reindex_changes /path/to/your/project
`$3
#### Index a TypeScript Project
`typescript
// The MCP tool automatically:
// 1. Scans all .ts, .tsx, .js, .jsx files
// 2. Respects .gitignore patterns (skips node_modules, dist, etc.)
// 3. Chunks code at function/class boundaries
// 4. Generates embeddings using your configured provider
// 5. Stores in Qdrant with metadata (file path, line numbers, language)index_codebase({
path: "/workspace/my-app",
forceReindex: false, // Set to true to re-index from scratch
});
// Output:
// ✓ Indexed 247 files (1,823 chunks) in 45.2s
`#### Search for Authentication Code
`typescript
search_code({
path: "/workspace/my-app",
query: "how does user authentication work?",
limit: 5,
});// Results include file path, line numbers, and code snippets:
// [
// {
// filePath: "src/auth/middleware.ts",
// startLine: 15,
// endLine: 42,
// content: "export async function authenticateUser(req: Request) { ... }",
// score: 0.89,
// language: "typescript"
// },
// ...
// ]
`#### Search with Filters
`typescript
// Only search TypeScript files
search_code({
path: "/workspace/my-app",
query: "error handling patterns",
fileTypes: [".ts", ".tsx"],
limit: 10,
});// Only search in specific directories
search_code({
path: "/workspace/my-app",
query: "API route handlers",
pathPattern: "src/api/**",
limit: 10,
});
`#### Incremental Re-indexing
`typescript
// After making changes to your codebase
reindex_changes({
path: "/workspace/my-app",
});// Output:
// ✓ Updated: +3 files added, ~5 files modified, -1 files deleted
// ✓ Chunks: +47 added, -23 deleted in 8.3s
`#### Check Indexing Status
`typescript
get_index_status({
path: "/workspace/my-app",
});// Output:
// {
// status: "indexed", // "not_indexed" | "indexing" | "indexed"
// isIndexed: true, // deprecated: use status instead
// collectionName: "code_a3f8d2e1",
// chunksCount: 1823,
// filesCount: 247,
// lastUpdated: "2025-01-30T10:15:00Z",
// languages: ["typescript", "javascript", "json"]
// }
`$3
Programming Languages (35+ file types):
- Web: TypeScript, JavaScript, Vue, Svelte
- Backend: Python, Java, Go, Rust, Ruby, PHP
- Systems: C, C++, C#
- Mobile: Swift, Kotlin, Dart
- Functional: Scala, Clojure, Haskell, OCaml
- Scripting: Bash, Shell, Fish
- Data: SQL, GraphQL, Protocol Buffers
- Config: JSON, YAML, TOML, XML, Markdown
See configuration for full list and customization options.
$3
Create a
.contextignore file in your project root to specify additional patterns to ignore:`gitignore
.contextignore
/test/
*/.test.ts
*/.spec.ts
/fixtures/
/mocks/
/__tests__/
`$3
1. Index Once, Update Incrementally: Use
index_codebase for initial indexing, then reindex_changes for updates
2. Use Filters: Narrow search scope with fileTypes and pathPattern for better results
3. Meaningful Queries: Use natural language that describes what you're looking for (e.g., "database connection pooling" instead of "db")
4. Check Status First: Use get_index_status to verify a codebase is indexed before searching
5. Local Embedding: Use Ollama (default) to keep everything local and private$3
Typical performance on a modern laptop (Apple M1/M2 or similar):
| Codebase Size | Files | Indexing Time | Search Latency |
| ----------------- | ----- | ------------- | -------------- |
| Small (10k LOC) | 50 | ~10s | <100ms |
| Medium (100k LOC) | 500 | ~2min | <200ms |
| Large (500k LOC) | 2,500 | ~10min | <500ms |
Note: Indexing time varies based on embedding provider. Ollama (local) is fastest for initial indexing.
Git History Search
Index and search your repository's git commit history using natural language. Perfect for finding past fixes, understanding change patterns, and learning from previous work.
$3
- Semantic Commit Search: Find commits by describing what you're looking for in natural language
- Conventional Commit Classification: Automatic classification of commits (feat, fix, refactor, etc.)
- Incremental Updates: Only index new commits for efficient updates
- Rich Filtering: Filter by commit type, author, or date range
- Metadata Extraction: Includes files changed, insertions/deletions, and full commit context
$3
1. Index your repository's git history:
`bash
Via Claude Code MCP tool
/mcp__qdrant__index_git_history /path/to/your/repo
`2. Search for relevant commits:
`bash
Natural language search
/mcp__qdrant__search_git_history /path/to/your/repo "fix authentication bug"Filter by commit type
/mcp__qdrant__search_git_history /path/to/your/repo "database optimization" --commitTypes fix,perfFilter by author
/mcp__qdrant__search_git_history /path/to/your/repo "API changes" --authors "john@example.com"
`3. Keep index up to date:
`bash
Incrementally index only new commits
/mcp__qdrant__index_new_commits /path/to/your/repo
`$3
- Finding Similar Fixes: "How was the null pointer issue in auth fixed before?"
- Understanding Patterns: "What refactoring was done to the database layer?"
- Learning from History: "Show me examples of API endpoint implementations"
- Code Archaeology: "What changes were made to the payment system last year?"
Advanced Search
Combine code and git history search for deeper codebase understanding. Requires repositories to be indexed with both
index_codebase and index_git_history first.- Contextual Search: Query code + git history together with automatic file-commit correlations
- Federated Search: Search across multiple repositories with RRF ranking
See Advanced Search Examples for detailed usage, workflows, and scenarios.
Examples
See examples/ directory for detailed guides:
- Basic Usage - Create collections, add documents, search
- Hybrid Search - Combine semantic and keyword search
- Knowledge Base - Structured documentation with metadata
- Advanced Filtering - Complex boolean filters
- Rate Limiting - Batch processing with cloud providers
- Code Search - Index codebases and semantic code search
- Advanced Search - Contextual and federated search across repositories
Advanced Configuration
$3
#### Core Configuration
| Variable | Description | Default |
| ------------------------- | -------------------------------------------------------- | --------------------- |
|
TRANSPORT_MODE | "stdio" or "http" | stdio |
| HTTP_PORT | Port for HTTP transport | 3000 |
| HTTP_REQUEST_TIMEOUT_MS | Request timeout for HTTP transport (ms) | 300000 |
| EMBEDDING_PROVIDER | "ollama", "openai", "cohere", "voyage" | ollama |
| QDRANT_URL | Qdrant server URL | http://localhost:6333 |
| QDRANT_API_KEY | API key for Qdrant authentication | - |
| LOG_LEVEL | Logging level (fatal/error/warn/info/debug/trace/silent) | info |
| PROMPTS_CONFIG_FILE | Path to prompts configuration JSON | prompts.json |#### Embedding Configuration
| Variable | Description | Default |
| ----------------------------------- | ------------------------ | ----------------- |
|
EMBEDDING_MODEL | Model name | Provider-specific |
| EMBEDDING_BASE_URL | Custom API URL | Provider-specific |
| EMBEDDING_MAX_REQUESTS_PER_MINUTE | Rate limit | Provider-specific |
| EMBEDDING_RETRY_ATTEMPTS | Retry count | 3 |
| EMBEDDING_RETRY_DELAY | Initial retry delay (ms) | 1000 |
| OPENAI_API_KEY | OpenAI API key | - |
| COHERE_API_KEY | Cohere API key | - |
| VOYAGE_API_KEY | Voyage AI API key | - |#### Code Vectorization Configuration
| Variable | Description | Default |
| ------------------------ | -------------------------------------------- | ------- |
|
CODE_CHUNK_SIZE | Maximum chunk size in characters | 2500 |
| CODE_CHUNK_OVERLAP | Overlap between chunks in characters | 300 |
| CODE_ENABLE_AST | Enable AST-aware chunking (tree-sitter) | true |
| CODE_BATCH_SIZE | Number of chunks to embed in one batch | 100 |
| CODE_CUSTOM_EXTENSIONS | Additional file extensions (comma-separated) | - |
| CODE_CUSTOM_IGNORE | Additional ignore patterns (comma-separated) | - |
| CODE_DEFAULT_LIMIT | Default search result limit | 5 |#### Git History Configuration
| Variable | Description | Default |
| -------------------------- | ---------------------------------------- | ------- |
|
GIT_MAX_COMMITS | Maximum commits to index per run | 5000 |
| GIT_INCLUDE_FILES | Include changed file list in chunks | true |
| GIT_INCLUDE_DIFF | Include truncated diff in chunks | true |
| GIT_MAX_DIFF_SIZE | Maximum diff size in bytes per commit | 5000 |
| GIT_TIMEOUT | Timeout for git commands (ms) | 300000 |
| GIT_MAX_CHUNK_SIZE | Maximum characters per chunk | 3000 |
| GIT_BATCH_SIZE | Number of chunks to embed in one batch | 100 |
| GIT_BATCH_RETRY_ATTEMPTS | Retry attempts for failed batches | 3 |
| GIT_SEARCH_LIMIT | Default search result limit | 10 |
| GIT_ENABLE_HYBRID | Enable hybrid search with sparse vectors | true |$3
| Provider | Models | Dimensions | Rate Limit | Notes |
| ---------- | --------------------------------------------------------------- | -------------- | ---------- | -------------------- |
| Ollama |
nomic-embed-text (default), mxbai-embed-large, all-minilm | 768, 1024, 384 | None | Local, no API key |
| OpenAI | text-embedding-3-small (default), text-embedding-3-large | 1536, 3072 | 3500/min | Cloud API |
| Cohere | embed-english-v3.0 (default), embed-multilingual-v3.0 | 1024 | 100/min | Multilingual support |
| Voyage | voyage-2 (default), voyage-large-2, voyage-code-2 | 1024, 1536 | 300/min | Code-specialized |Note: Ollama models require pulling before use:
- Podman:
podman exec ollama ollama pull
- Docker: docker exec ollama ollama pull Troubleshooting
| Issue | Solution |
| ------------------------------ | ----------------------------------------------------------------------------------------- |
| Qdrant not running |
podman compose up -d or docker compose up -d |
| Collection missing | Create collection first before adding documents |
| Ollama not running | Verify with curl http://localhost:11434, start with podman compose up -d |
| Model missing | podman exec ollama ollama pull nomic-embed-text or docker exec ollama ollama pull ... |
| Rate limit errors | Adjust EMBEDDING_MAX_REQUESTS_PER_MINUTE to match your provider tier |
| API key errors | Verify correct API key in environment configuration |
| Qdrant unauthorized | Set QDRANT_API_KEY environment variable for secured instances |
| Filter errors | Ensure Qdrant filter format, check field names match metadata |
| Codebase not indexed | Run index_codebase before search_code |
| Slow indexing | Use Ollama (local) for faster indexing, or increase CODE_BATCH_SIZE |
| Files not found | Check .gitignore and .contextignore patterns |
| Search returns no results | Try broader queries, check if codebase is indexed with get_index_status |
| Out of memory during index | Reduce CODE_CHUNK_SIZE or CODE_BATCH_SIZE |
| Node 24 tree-sitter error | Run CXXFLAGS='-std=c++20' npm install - Node 24 requires C++20 for native modules |Development
`bash
npm run dev # Development with auto-reload
npm run build # Production build
npm run type-check # TypeScript validation
npm test # Run test suite
npm run test:coverage # Coverage report
`$3
748 tests across 27 test files with 97%+ coverage:
- Unit Tests: QdrantManager (56), Ollama (41), OpenAI (25), Cohere (29), Voyage (31), Factory (43), Prompts (50), Transport (15), MCP Server (19)
- Integration Tests: Code indexer (56), scanner (15), chunker (24), synchronizer (42), snapshot (26), merkle tree (28)
- Git History Tests: Git extractor (28), extractor integration (11), chunker (30), indexer (42), synchronizer (18)
- Advanced Search Tests: Federated tools (30) - normalizeScores, calculateRRFScore, buildCorrelations, contextual_search, federated_search
CI/CD: GitHub Actions runs build, type-check, and tests on Node.js 22.x and 24.x for every push/PR.
Contributing
Contributions welcome! See CONTRIBUTING.md for:
- Development workflow
- Conventional commit format (
feat:, fix:, BREAKING CHANGE:)
- Testing requirements (run npm test, npm run type-check, npm run build)Automated releases: Semantic versioning via conventional commits -
feat: → minor, fix: → patch, BREAKING CHANGE:` → major.The code vectorization feature is inspired by and builds upon concepts from the excellent claude-context project (MIT License, Copyright 2025 Zilliz).
MIT - see LICENSE file.