Distributed compute intelligence network with WASM cryptographic security - contribute browser compute, spawn distributed AI agents, earn credits. Features Ed25519 signing, PiKey identity, Time Crystal coordination, Neural DAG attention, P2P swarm intelli
npm install @ruvector/edge-netThe Decentralized AI Compute Network - Private, Modular, Unstoppable
> Cogito, Creo, Codex — I think, I create, I code.
Transform idle browser compute into a globally distributed AI infrastructure. Edge-net combines WebRTC P2P networking, WASM-accelerated cryptography, and a modular plugin architecture to create a self-sustaining collective intelligence network.
> v0.5.1 - Now with hardened plugin system featuring Ed25519 verification, rate limiting, and HKDF key derivation.
```
┌─────────────────────────────────────────────────────────────────────────────┐
│ EDGE-NET: DECENTRALIZED AI COMPUTE NETWORK │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Browser │ │ Global P2P │ │ AI Tasks │ │
│ │ Nodes │◄─────►│ Mesh │◄─────►│ Executed │ │
│ │ (WASM) │ WebRTC│ (Genesis) │ │ Privately │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Contribute │ │ Earn rUv │ │ Extend via │ │
│ │ Idle CPU │ ───► │ Credits │ ───► │ Plugins │ │
│ │ Securely │ │ Privately │ │ Modularly │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
│ Vector Search │ Embeddings │ E2E Encryption │ Federated ML │ Swarm AI │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
| Problem | Edge-Net Solution |
|---------|-------------------|
| Centralized AI requires sending your data to cloud providers | Local-first - your data never leaves your browser |
| GPU scarcity makes AI expensive and inaccessible | Collective compute - thousands of browsers working together |
| Monolithic systems force all-or-nothing adoption | Plugin architecture - enable only what you need |
| Closed networks lock you into vendor ecosystems | Open P2P - WebRTC mesh with no central authority |
| Opaque AI - you can't verify what's running | Transparent WASM - auditable, reproducible compute |
- WebRTC P2P Networking
- Plugin System
- Core Invariants
- What is Edge-Net?
- Key Features
- Quick Start
- How It Works
- AI Computing Tasks
- Pi-Key Identity System
- Security Architecture
- Self-Optimization
- Tutorials
- API Reference
- Development
- Exotic AI Capabilities
- Core Architecture & Capabilities
- Self-Learning Hooks & MCP Integration
- Distributed AI Agents & Workers
---
Edge-net implements real WebRTC peer-to-peer connectivity for direct browser-to-browser communication, with Google Cloud genesis nodes for global coordination.
``
┌─────────────────────────────────────────────────────────────────────────────┐
│ WEBRTC P2P NETWORK ARCHITECTURE │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ Signaling ┌─────────────┐ │
│ │ Browser A │◄──────────────────►│ Relay │ (WebSocket) │
│ │ (Node 1) │ offer/answer │ Server │ │
│ └──────┬──────┘ ICE candidates └─────────────┘ │
│ │ │
│ │ WebRTC Data Channel (DTLS encrypted, direct P2P) │
│ │ │
│ ▼ │
│ ┌─────────────┐ ┌─────────────┐ │
│ │ Browser B │◄──────────────────►│ Browser C │ │
│ │ (Node 2) │ Direct P2P │ (Node 3) │ │
│ └─────────────┘ └─────────────┘ │
│ │
│ Genesis Nodes (Google Cloud): │
│ • us-central1 • europe-west1 • asia-east1 │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
| Feature | Description |
|---------|-------------|
| Real P2P Data Channels | Direct browser-to-browser communication |
| ICE/STUN/TURN | NAT traversal with Google STUN servers |
| DTLS Encryption | End-to-end encrypted data channels |
| WebSocket Signaling | Relay server for connection establishment |
| Automatic Reconnection | Self-healing connections with exponential backoff |
| Heartbeat Monitoring | Connection health with 5s heartbeat |
| Connection Quality Metrics | Latency, throughput, packet loss tracking |
| Fallback Simulation | Offline mode when signaling unavailable |
| Region | Host | Purpose |
|--------|------|---------|
| us-central1 | edge-net-genesis-us.ruvector.dev | Americas coordination |
| europe-west1 | edge-net-genesis-eu.ruvector.dev | EMEA coordination |
| asia-east1 | edge-net-genesis-asia.ruvector.dev | APAC coordination |
| Security Feature | Implementation |
|-----------------|----------------|
| DTLS 1.2+ | Data channel encryption |
| SCTP | Reliable ordered delivery |
| Origin Validation | CORS whitelist for browser connections |
| Rate Limiting | 100 msg/min per node |
| Message Size Limits | 64KB max message size |
| Connection Limits | 5 connections per IP |
| Heartbeat Timeout | 30s stale connection cleanup |
| SDP Sanitization | Prevent injection attacks |
The relay server (relay/index.js) handles:
`javascript`
// WebRTC signaling message types
'webrtc_offer' // Relay SDP offer to target peer
'webrtc_answer' // Relay SDP answer back
'webrtc_ice' // Relay ICE candidates
'webrtc_disconnect' // Notify peer of disconnection
`bash
cd examples/edge-net/relay
npm install
node index.js &
cd ../test
npm install
$3
`javascript
// join.html implements real WebRTC
const WEBRTC_CONFIG = {
iceServers: [
{ urls: 'stun:stun.l.google.com:19302' },
{ urls: 'stun:stun1.l.google.com:19302' },
]
};// Connects to relay server
const RELAY_URL = 'ws://localhost:8080';
// Real peer connections via RTCPeerConnection
const pc = new RTCPeerConnection(WEBRTC_CONFIG);
const channel = pc.createDataChannel('edge-net');
`---
Plugin System
Edge-net features a modular plugin architecture that lets you enable only the capabilities you need. Plugins are cryptographically verified, sandboxed, and rate-limited for security.
$3
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ EDGE-NET PLUGIN ARCHITECTURE │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────────┐ │
│ │ Plugin Loader (Secure) │ │
│ │ • Ed25519 signature verification • Rate limiting (100 req/min) │ │
│ │ • SHA-256 integrity checks • Capability-based sandbox │ │
│ │ • Lazy loading with cache • Frozen manifest objects │ │
│ └─────────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ ┌───────────┐ │
│ │ CORE │ │ NETWORK │ │ CRYPTO │ │ PRIVACY │ │ AI │ │
│ │ │ │ │ │ │ │ │ │ │ │
│ │ Compress │ │ Mesh Opt │ │ ZK-Proofs │ │ Onion │ │ Federated │ │
│ │ Metrics │ │ Gossip │ │ MPC │ │ Mixnet │ │ Swarm │ │
│ │ Logging │ │ DHT │ │ Threshold │ │ PIR │ │ RL Agent │ │
│ └───────────┘ └───────────┘ └───────────┘ └───────────┘ └───────────┘ │
│ │
│ ┌───────────┐ ┌───────────┐ ┌───────────┐ │
│ │ ECONOMIC │ │ STORAGE │ │ EXOTIC │ │
│ │ │ │ │ │ │ │
│ │ Staking │ │ IPFS │ │ Time │ │
│ │ AMM │ │ Arweave │ │ Crystal │ │
│ │ Auction │ │ Filecoin │ │ Morpho │ │
│ └───────────┘ └───────────┘ └───────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`$3
| Category | Description | Example Plugins |
|----------|-------------|-----------------|
| core | Essential functionality | compression, metrics, logging |
| network | Network topology & routing | mesh-optimization, gossip-protocol, dht-routing |
| crypto | Cryptographic features | zk-proofs, mpc-compute, threshold-signatures, e2e-encryption |
| privacy | Privacy-enhancing tech | onion-routing, mixnet, pir (private info retrieval) |
| ai | AI/ML capabilities | federated-learning, swarm-intelligence, rl-agents, onnx-inference |
| economic | Incentive mechanisms | reputation-staking, amm-pricing, auction-mechanism |
| storage | Data persistence | ipfs-storage, arweave-persist, filecoin-deals |
| exotic | Experimental features | time-crystal, morphogenetic-net, quantum-sim |
$3
| Tier | Badge | Description |
|------|-------|-------------|
| stable | 🟢 | Production-ready, security audited |
| beta | 🟡 | Feature complete, needs testing |
| experimental | 🟠 | Works but may change |
| research | 🔴 | Academic/research only |
$3
Plugins declare required capabilities. The loader enforces these at runtime:
| Capability | Permission | Description |
|------------|------------|-------------|
|
network:connect | Network | Outbound connections |
| network:listen | Network | Accept connections |
| network:relay | Network | Relay for other nodes |
| crypto:sign | Crypto | Digital signatures |
| crypto:encrypt | Crypto | Encryption/decryption |
| crypto:keygen | Crypto | Key generation |
| storage:read | Storage | Read local data |
| storage:write | Storage | Write local data |
| storage:delete | Storage | Delete local data |
| compute:cpu | Compute | CPU-intensive work |
| compute:gpu | Compute | WebGPU acceleration |
| compute:wasm | Compute | WASM module execution |
| system:env | System | Environment variables |
| system:fs | System | Filesystem access |
| system:exec | System | Execute commands (denied by default) |$3
`javascript
import { PluginManager } from '@ruvector/edge-net/plugins';// Get plugin manager instance
const plugins = PluginManager.getInstance({
allowedTiers: ['stable', 'beta'],
verifySignatures: true,
});
// Load individual plugins
const compression = await plugins.load('core.compression');
const encryption = await plugins.load('crypto.e2e-encryption');
// Or load a bundle
await plugins.loadBundle('privacy-focused');
// Loads: compression, e2e-encryption, onion-routing, zk-proofs, pir
// Use plugins
const compressed = compression.compress(data);
const encrypted = encryption.encrypt('peer-123', sensitiveData);
`$3
| Bundle | Plugins | Use Case |
|--------|---------|----------|
| minimal | (none) | Bare-bones, maximum control |
| standard | compression, metrics, e2e-encryption | Typical usage |
| privacy-focused | compression, e2e-encryption, onion-routing, zk-proofs, pir | Maximum privacy |
| ai-compute | compression, federated-learning, swarm-intelligence, onnx-inference | AI workloads |
| experimental | All experimental tier plugins | Research & testing |
$3
`bash
List all plugins
edge-net plugins listFilter by category or tier
edge-net plugins list privacy
edge-net plugins list experimentalGet plugin details
edge-net plugins info crypto.zk-proofsList bundles
edge-net plugins bundlesCreate custom plugin
edge-net plugins create my-plugin --category ai --tier experimentalValidate plugin
edge-net plugins validate ./my-plugin/index.js
`$3
`javascript
import { BasePlugin, PluginCategory, PluginTier, Capability } from '@ruvector/edge-net/plugins/sdk';class MyCustomPlugin extends BasePlugin {
static manifest = {
id: 'custom.my-plugin',
name: 'My Custom Plugin',
version: '1.0.0',
description: 'Does amazing things',
category: PluginCategory.AI,
tier: PluginTier.EXPERIMENTAL,
capabilities: [Capability.COMPUTE_WASM, Capability.NETWORK_CONNECT],
};
async onInit(config, sandbox) {
sandbox.require(Capability.COMPUTE_WASM);
this.ready = true;
}
async process(data) {
// Your plugin logic
return { processed: true, data };
}
}
// Register with the plugin system
import { getRegistry } from '@ruvector/edge-net/plugins/sdk';
getRegistry().register(MyCustomPlugin);
`$3
| Feature | Implementation |
|---------|----------------|
| Ed25519 Signatures | All non-stable plugins must be cryptographically signed |
| SHA-256 Checksums | Verify plugin integrity before loading |
| Rate Limiting | 100 requests/minute per plugin to prevent DoS |
| Capability Sandbox | Plugins can only access declared capabilities |
| Frozen Manifests | Plugin metadata immutable after load |
| HKDF Key Derivation | Secure key generation with proper entropy |
| Path Validation | Prevent directory traversal attacks |
| Trusted Authors | Public key registry for verified developers |
$3
Plugins operate under explicit failure constraints to prevent ecosystem fragility:
- Silent degradation: Plugins may fail, be unloaded, or be rate-limited without warning to the caller
- Core isolation: Network liveness, task routing, and credit settlement never depend on plugin success
- No blocking: Plugins cannot block core operations; timeouts are enforced at the sandbox level
$3
| Plugin | Description | Performance |
|--------|-------------|-------------|
| compression | LZ4/Zstd compression | 354 MB/s |
| e2e-encryption | AES-256-GCM with HKDF | 54K ops/sec |
| federated-learning | Byzantine-tolerant FL | 12.7M samples/sec |
| reputation-staking | Stake-weighted trust | Instant |
| swarm-intelligence | PSO/GA/DE/ACO optimization | 19K iter/sec |
---
Core Invariants
> Cogito, Creo, Codex — The system thinks collectively, creates through contribution, and codifies trust in cryptographic proof.
These rules are not configurable. They define what Edge-net is.
| Invariant | Constraint |
|-----------|------------|
| Network liveness without plugins | The network must route tasks, settle credits, and maintain connections with zero plugins loaded. Plugins extend; they never enable. |
| Economic settlement isolation | rUv minting, burning, and settlement are core-only operations. Economic plugins may observe, suggest, or model—but never execute settlement. |
| Identity persistence and decay | Identities are permanent once created, but reputation decays without activity. New identities face a warm-up curve before full participation. |
| Verifiable work or no reward | Credit issuance requires cryptographic proof of work completion. Unverifiable claims are rejected, not trusted. |
| Degradation over halt | The system degrades gracefully under load, attack, or partial failure. It never halts. Consistency is sacrificed before availability. |
$3
The credit system is explicitly not extensible:
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ ECONOMIC SETTLEMENT BOUNDARY │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ CORE (immutable) PLUGINS (observable only) │
│ ┌─────────────────────────┐ ┌─────────────────────────┐ │
│ │ • rUv minting │ │ • Pricing suggestions │ │
│ │ • rUv burning │ ──► │ • Reputation scoring │ │
│ │ • Credit settlement │ read │ • Economic modeling │ │
│ │ • Balance enforcement │ only │ • Auction mechanisms │ │
│ │ • Slashing execution │ │ • AMM simulations │ │
│ └─────────────────────────┘ └─────────────────────────┘ │
│ │
│ Plugins CANNOT: mint, burn, transfer, or settle credits directly │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`$3
New identities face friction to prevent plugin marketplace Sybil attacks:
| Mechanism | Description |
|-----------|-------------|
| Delayed activation | 24-hour window before full task execution privileges |
| Reputation warm-up | Linear ramp from 0.1 to 1.0 reputation over first 100 tasks |
| Stake requirement | Optional stake to unlock higher task priority (slashable) |
| Witness diversity | Task results require confirmation from identities with independent creation times |
---
What is Edge-Net?
Edge-net creates a collective computing network where participants share idle browser resources to power distributed AI workloads. Think of it as a cooperative where:
1. You Contribute - Share unused CPU cycles when browsing
2. You Earn - Accumulate rUv (Resource Utility Vouchers) based on contribution
3. You Use - Spend rUv to run AI tasks across the collective network
4. Network Grows - More participants = more collective computing power
$3
| Traditional AI Computing | Collective Edge-Net |
|-------------------------|---------------------|
| Expensive GPU servers | Free idle browser CPUs |
| Centralized data centers | Distributed global network |
| Pay-per-use pricing | Contribution-based access |
| Single point of failure | Resilient P2P mesh |
| Limited by your hardware | Scale with the collective |
$3
| Principle | Description |
|-----------|-------------|
| Collectibility | Resources are pooled and shared fairly |
| Contribution | Earn by giving, spend by using |
| Self-Sustaining | Network operates without central control |
| Privacy-First | Pi-Key cryptographic identity system |
| Adaptive | Q-learning security protects the collective |
---
Key Features
$3
| Feature | Benefit |
|---------|---------|
| Idle CPU Utilization | Use resources that would otherwise be wasted |
| Browser-Based | No installation, runs in any modern browser |
| Adjustable Contribution | Control how much you share (10-50% CPU) |
| Battery Aware | Automatically reduces on battery power |
| Fair Distribution | Work routed based on capability matching |
$3
Edge-net provides a complete AI stack that runs entirely in your browser. Each component is designed to be lightweight, fast, and work without a central server.
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ AI INTELLIGENCE STACK │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────────┐ │
│ │ MicroLoRA Adapter Pool (from ruvLLM) │ │
│ │ • LRU-managed pool (16 slots) • Rank 1-16 adaptation │ │
│ │ • <50µs rank-1 forward • 2,236+ ops/sec with batch 32 │ │
│ │ • 4-bit/8-bit quantization • P2P shareable adapters │ │
│ └─────────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────────────┐ │
│ │ SONA - Self-Optimizing Neural Architecture │ │
│ │ • Instant Loop: Per-request MicroLoRA adaptation │ │
│ │ • Background Loop: Hourly K-means consolidation │ │
│ │ • Deep Loop: Weekly EWC++ consolidation (catastrophic forgetting) │ │
│ └─────────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────┐ ┌──────────────────────┐ ┌─────────────────┐ │
│ │ HNSW Vector Index │ │ Federated Learning │ │ ReasoningBank │ │
│ │ • 150x faster │ │ • TopK Sparsify 90% │ │ • Trajectories │ │
│ │ • O(log N) search │ │ • Byzantine tolerant│ │ • Pattern learn │ │
│ │ • Incremental P2P │ │ • Diff privacy │ │ • 87x energy │ │
│ └──────────────────────┘ └──────────────────────┘ └─────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`#### Core AI Tasks
| Task Type | Use Case | How It Works |
|-----------|----------|--------------|
| Vector Search | Find similar items | HNSW index with 150x speedup |
| Embeddings | Text understanding | Generate semantic vectors |
| Semantic Match | Intent detection | Classify meaning |
| LoRA Inference | Task adaptation | MicroLoRA <100µs forward |
| Pattern Learning | Self-optimization | ReasoningBank trajectories |
---
#### MicroLoRA Adapter System
> What it does: Lets the network specialize for different tasks without retraining the whole model. Think of it like having 16 expert "hats" the AI can quickly swap between - one for searching, one for encryption, one for routing, etc.
Ported from ruvLLM with enhancements for distributed compute:
| Feature | Specification | Performance |
|---------|--------------|-------------|
| Rank Support | 1-16 | Rank-1: <50µs, Rank-2: <100µs |
| Pool Size | 16 concurrent adapters | LRU eviction policy |
| Quantization | 4-bit, 8-bit | 75% memory reduction |
| Batch Size | 32 (optimal) | 2,236+ ops/sec |
| Task Types | VectorSearch, Embedding, Inference, Crypto, Routing | Auto-routing |
Why it matters: Traditional AI models are "one size fits all." MicroLoRA lets each node become a specialist for specific tasks in under 100 microseconds - faster than a blink.
---
#### SONA: Self-Optimizing Neural Architecture
> What it does: The network teaches itself to get better over time using three learning speeds - instant reactions, daily improvements, and long-term memory. Like how your brain handles reflexes, daily learning, and permanent memories differently.
Three-temporal-loop continuous learning system:
| Loop | Interval | Mechanism | Purpose |
|------|----------|-----------|---------|
| Instant | Per-request | MicroLoRA rank-2 | Immediate adaptation |
| Background | Hourly | K-means clustering | Pattern consolidation |
| Deep | Weekly | EWC++ (λ=2000) | Prevent catastrophic forgetting |
Why it matters: Most AI systems forget old knowledge when learning new things ("catastrophic forgetting"). SONA's three-loop design lets the network learn continuously without losing what it already knows.
---
#### HNSW Vector Index
> What it does: Finds similar items incredibly fast by organizing data like a multi-level highway system. Instead of checking every item (like walking door-to-door), it takes smart shortcuts to find what you need 150x faster.
| Parameter | Default | Description |
|-----------|---------|-------------|
| M | 32 | Max connections per node |
| M_max_0 | 64 | Max connections at layer 0 |
| ef_construction | 200 | Build-time beam width |
| ef_search | 64 | Search-time beam width |
| Performance | 150x | Speedup vs linear scan |
Why it matters: When searching millions of vectors, naive search takes seconds. HNSW takes milliseconds - essential for real-time AI responses.
---
#### Federated Learning
> What it does: Nodes teach each other without sharing their private data. Each node trains on its own data, then shares only the "lessons learned" (gradients) - like students sharing study notes instead of copying each other's homework.
P2P gradient gossip without central coordinator:
| Feature | Mechanism | Benefit |
|---------|-----------|---------|
| TopK Sparsification | 90% compression | Only share the most important updates |
| Rep-Weighted FedAvg | Reputation scoring | Trusted nodes have more influence |
| Byzantine Tolerance | Outlier detection, clipping | Ignore malicious or broken nodes |
| Differential Privacy | Noise injection | Mathematically guaranteed privacy |
| Gossip Protocol | Eventually consistent | Works even if some nodes go offline |
Why it matters: Traditional AI training requires sending all your data to a central server. Federated learning keeps your data local while still benefiting from collective intelligence.
---
#### ReasoningBank & Learning Intelligence
> What it does: The network's "memory system" that remembers what worked and what didn't. Like keeping a journal of successful strategies that any node can learn from.
| Component | What It Does | Why It's Fast |
|-----------|--------------|---------------|
| ReasoningBank | Stores successful task patterns | Semantic search for quick recall |
| Pattern Extractor | Groups similar experiences together | K-means finds common patterns |
| Multi-Head Attention | Decides which node handles each task | Parallel evaluation of options |
| Spike-Driven Attention | Ultra-low-power decision making | 87x more energy efficient |
Why it matters: Without memory, the network would repeat the same mistakes. ReasoningBank lets nodes learn from each other's successes and failures across the entire collective.
$3
Ultra-compact cryptographic identity using mathematical constants:
| Key Type | Size | Purpose |
|----------|------|---------|
| π (Pi-Key) | 40 bytes | Your permanent identity |
| e (Session) | 34 bytes | Temporary encrypted sessions |
| φ (Genesis) | 21 bytes | Network origin markers |
$3
- Automatic Task Routing - Work goes to best-suited nodes
- Topology Optimization - Network self-organizes for efficiency
- Q-Learning Security - Learns to defend against threats
- Economic Balance - Self-sustaining resource economy
---
Quick Start
$3
`html
`$3
`javascript
// Submit an AI task to the collective
const result = await node.submitTask('vector_search', {
query: embeddings,
k: 10,
index: 'shared-knowledge-base'
}, 5); // Spend up to 5 rUvconsole.log('Similar items:', result);
`$3
`javascript
// Check your standing in the collective
const stats = node.getStats();
console.log();
`---
How It Works
$3
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ CONTRIBUTION CYCLE │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ 1. CONTRIBUTE 2. EARN 3. USE │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Browser │ │ rUv │ │ AI Tasks │ │
│ │ detects │ ───► │ credited │ ───► │ submitted │ │
│ │ idle time │ │ to you │ │ to network │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Process │ │ 10x boost │ │ Results │ │
│ │ incoming │ │ for early │ │ returned │ │
│ │ tasks │ │ adopters │ │ to you │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`$3
The collective grows through natural phases:
| Phase | Size | Your Benefit |
|-------|------|--------------|
| Genesis | 0-10K nodes | 10x rUv multiplier (early adopter bonus) |
| Growth | 10K-50K | Multiplier decreases, network strengthens |
| Maturation | 50K-100K | Stable economy, high reliability |
| Independence | 100K+ | Self-sustaining, maximum collective power |
$3
`javascript
// The network automatically optimizes task distribution
const health = JSON.parse(node.getEconomicHealth());console.log(
);
`---
AI Computing Tasks
$3
Find similar items across the collective's distributed index:
`javascript
// Search for similar documents
const similar = await node.submitTask('vector_search', {
query: [0.1, 0.2, 0.3, ...], // Your query vector
k: 10, // Top 10 results
index: 'shared-docs' // Distributed index name
}, 3); // Max 3 rUv// Results from across the network
similar.forEach(item => {
console.log(
Score: ${item.score}, ID: ${item.id});
});
`$3
Generate semantic embeddings using collective compute:
`javascript
// Generate embeddings for text
const embeddings = await node.submitTask('embedding', {
text: 'Your text to embed',
model: 'sentence-transformer'
}, 2);console.log('Embedding vector:', embeddings);
`$3
Classify intent or meaning:
`javascript
// Classify text intent
const intent = await node.submitTask('semantic_match', {
text: 'I want to cancel my subscription',
categories: ['billing', 'support', 'sales', 'general']
}, 1);console.log('Detected intent:', intent.category);
`$3
Encrypt data across the network:
`javascript
// Distributed encryption
const encrypted = await node.submitTask('encryption', {
data: sensitiveData,
operation: 'encrypt',
key_id: 'my-shared-key'
}, 2);
`---
Pi-Key Identity System
Your identity in the collective uses mathematical constants for key sizes:
$3
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ PI-KEY IDENTITY SYSTEM │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ π Pi-Key (Identity) e Euler-Key (Session) φ Phi-Key (Genesis) │
│ ┌─────────────────┐ ┌───────────────┐ ┌───────────────┐ │
│ │ 314 bits │ │ 271 bits │ │ 161 bits │ │
│ │ = 40 bytes │ │ = 34 bytes │ │ = 21 bytes │ │
│ │ │ │ │ │ │ │
│ │ Your unique │ │ Temporary │ │ Origin │ │
│ │ identity │ │ sessions │ │ markers │ │
│ │ (permanent) │ │ (encrypted) │ │ (network) │ │
│ └─────────────────┘ └───────────────┘ └───────────────┘ │
│ │
│ Ed25519 Signing AES-256-GCM SHA-256 Derived │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`$3
`javascript
import { PiKey, SessionKey, GenesisKey } from '@ruvector/edge-net';// Create your permanent identity
const identity = new PiKey();
console.log(
Your ID: ${identity.getShortId()}); // π:a1b2c3d4...// Sign data
const signature = identity.sign(data);
const valid = identity.verify(data, signature, identity.getPublicKey());
// Create encrypted backup
const backup = identity.createEncryptedBackup('my-password');
// Create temporary session
const session = SessionKey.create(identity, 3600); // 1 hour
const encrypted = session.encrypt(sensitiveData);
const decrypted = session.decrypt(encrypted);
`---
Security Architecture
Edge-net implements production-grade cryptographic security:
$3
| Component | Algorithm | Purpose |
|-----------|-----------|---------|
| Key Derivation | Argon2id (64MB, 3 iterations) | Memory-hard password hashing |
| Signing | Ed25519 | Digital signatures (128-bit security) |
| Encryption | AES-256-GCM | Authenticated encryption |
| Hashing | SHA-256 | Content hashing and verification |
$3
`rust
// Password-protected key export with Argon2id + AES-256-GCM
let encrypted = identity.export_secret_key("strong_password")?;// Secure memory cleanup (zeroize)
// All sensitive key material is automatically zeroed after use
`$3
All resolution events require cryptographic proof:
`rust
// Ed25519 signature verification for authority decisions
let signature = ScopedAuthority::sign_resolution(&resolution, &context, &signing_key);
// Signature verified against registered authority public keys
`$3
The RAC (RuVector Adversarial Coherence) protocol defends against:
| Attack | Defense |
|--------|---------|
| Sybil | Stake-weighted voting, witness path diversity |
| Eclipse | Context isolation, Merkle divergence detection |
| Byzantine | 1/3 threshold, escalation tracking |
| Replay | Timestamp validation, duplicate detection |
| Double-spend | Conflict detection, quarantine system |
---
Self-Optimization
The network continuously improves itself:
$3
`javascript
// Get optimal peers for your tasks
const peers = node.getOptimalPeers(5);// Network learns from every interaction
node.recordTaskRouting('vector_search', 'peer-123', 45, true);
`$3
`javascript
// High-performing nodes can replicate their config
if (node.shouldReplicate()) {
const optimalConfig = node.getRecommendedConfig();
// New nodes inherit successful configurations
}// Track your contribution
const fitness = node.getNetworkFitness(); // 0.0 - 1.0
`$3
The collective learns to defend itself:
`javascript
// Run security audit
const audit = JSON.parse(node.runSecurityAudit());
console.log(Security Score: ${audit.security_score}/10);// Defends against:
// - DDoS attacks
// - Sybil attacks
// - Byzantine behavior
// - Eclipse attacks
// - Replay attacks
`---
Tutorials
$3
`javascript
import init, { EdgeNetConfig } from '@ruvector/edge-net';async function joinCollective() {
await init();
// Configure your contribution
const node = new EdgeNetConfig('my-site')
.cpuLimit(0.25) // 25% CPU when idle
.memoryLimit(128 1024 1024) // 128MB
.minIdleTime(5000) // Wait 5s of idle
.respectBattery(true) // Reduce on battery
.build();
// Join the network
node.start();
// Check your status
console.log('Joined collective!');
console.log(
Node ID: ${node.nodeId()});
console.log(Multiplier: ${node.getMultiplier()}x); return node;
}
`$3
`javascript
async function contributeAndEarn(node) {
// Process tasks from the collective
let tasksCompleted = 0; while (true) {
// Check if we should work
if (node.isIdle()) {
// Process a task from the network
const processed = await node.processNextTask();
if (processed) {
tasksCompleted++;
const stats = node.getStats();
console.log(
Completed ${tasksCompleted} tasks, earned ${stats.ruv_earned} rUv);
}
} await new Promise(r => setTimeout(r, 1000));
}
}
`$3
`javascript
async function useCollectiveAI(node) {
// Check your balance
const balance = node.ruvBalance();
console.log(Available: ${balance} rUv); // Submit AI tasks
const tasks = [
{ type: 'vector_search', cost: 3 },
{ type: 'embedding', cost: 2 },
{ type: 'semantic_match', cost: 1 }
];
for (const task of tasks) {
if (balance >= task.cost) {
console.log(
Running ${task.type}...);
const result = await node.submitTask(
task.type,
{ data: 'sample' },
task.cost
);
console.log(Result: ${JSON.stringify(result)});
}
}
}
`$3
`javascript
async function monitorHealth(node) {
setInterval(() => {
// Your contribution
const stats = node.getStats();
console.log(); // Network health
const health = JSON.parse(node.getEconomicHealth());
console.log(
); // Check sustainability
const sustainable = node.isSelfSustaining(10000, 50000);
console.log(
Self-sustaining: ${sustainable}); }, 30000);
}
`---
API Reference
$3
| Method | Description | Returns |
|--------|-------------|---------|
|
new EdgeNetNode(siteId) | Join the collective | EdgeNetNode |
| start() | Begin contributing | void |
| pause() / resume() | Control contribution | void |
| ruvBalance() | Check your credits | u64 |
| submitTask(type, payload, maxCost) | Use collective compute | Promise |
| processNextTask() | Process work for others | Promise |$3
| Method | Description | Returns |
|--------|-------------|---------|
|
new PiKey() | Generate identity | PiKey |
| getIdentity() | Get 40-byte identity | Vec |
| sign(data) | Sign data | Vec |
| verify(data, sig, pubkey) | Verify signature | bool |
| createEncryptedBackup(password) | Backup identity | Vec |$3
| Method | Description | Returns |
|--------|-------------|---------|
|
getNetworkFitness() | Your contribution score | f32 |
| getOptimalPeers(count) | Best nodes for tasks | Vec |
| getEconomicHealth() | Network health metrics | String (JSON) |
| isSelfSustaining(nodes, tasks) | Check sustainability | bool |---
Development
$3
`bash
cd examples/edge-net
wasm-pack build --target web --out-dir pkg
`$3
`bash
cargo test
`$3
`bash
cd sim
npm install
npm run simulate
`---
Exotic AI Capabilities
Edge-net can be enhanced with exotic AI WASM capabilities for advanced P2P coordination, self-learning, and distributed reasoning. Enable these features by building with the appropriate feature flags.
$3
| Feature | Description | Dependencies |
|---------|-------------|--------------|
|
exotic | Time Crystal, NAO, Morphogenetic Networks | ruvector-exotic-wasm |
| learning-enhanced | MicroLoRA, BTSP, HDC, WTA, Global Workspace | ruvector-learning-wasm, ruvector-nervous-system-wasm |
| economy-enhanced | Enhanced CRDT credits | ruvector-economy-wasm |
| exotic-full | All exotic capabilities | All above |$3
Robust distributed coordination using discrete time crystal dynamics:
`javascript
// Enable time crystal with 10 oscillators
node.enableTimeCrystal(10);// Check synchronization level (0.0 - 1.0)
const sync = node.getTimeCrystalSync();
console.log(
P2P sync: ${(sync * 100).toFixed(1)}%);// Check if crystal is stable
if (node.isTimeCrystalStable()) {
console.log('Network is synchronized!');
}
`$3
Decentralized governance with stake-weighted quadratic voting:
`javascript
// Enable NAO with 70% quorum requirement
node.enableNAO(0.7);// Add peer nodes as members
node.addNAOMember('peer-123', 100);
node.addNAOMember('peer-456', 50);
// Propose and vote on network actions
const propId = node.proposeNAOAction('Increase task capacity');
node.voteNAOProposal(propId, 0.9); // Vote with 90% weight
// Execute if quorum reached
if (node.executeNAOProposal(propId)) {
console.log('Proposal executed!');
}
`$3
Ultra-fast LoRA adaptation with <100us latency:
`javascript
// Enable MicroLoRA with rank-2 adaptation
node.enableMicroLoRA(2);// Adapt weights based on task feedback
const gradient = new Float32Array(128);
node.adaptMicroLoRA('vector_search', gradient);
// Apply adaptation to inputs
const input = new Float32Array(128);
const adapted = node.applyMicroLoRA('vector_search', input);
`$3
10,000-bit binary hypervectors for distributed reasoning:
`javascript
// Enable HDC memory
node.enableHDC();// Store patterns for semantic operations
node.storeHDCPattern('concept_a');
node.storeHDCPattern('concept_b');
`$3
Instant decisions with <1us latency:
`javascript
// Enable WTA with 1000 neurons
node.enableWTA(1000);
`$3
Immediate pattern association without iterative training:
`javascript
// Enable BTSP with 128-dim inputs
node.enableBTSP(128);// One-shot associate a pattern
const pattern = new Float32Array(128);
node.oneShotAssociate(pattern, 1.0);
`$3
Self-organizing network topology through cellular differentiation:
`javascript
// Enable 100x100 morphogenetic grid
node.enableMorphogenetic(100);// Network grows automatically
console.log(
Cells: ${node.getMorphogeneticCellCount()});
`$3
In your main loop, step all capabilities forward:
`javascript
function gameLoop(dt) {
// Step exotic capabilities
node.stepCapabilities(dt); // Process tasks
node.processNextTask();
}
setInterval(() => gameLoop(0.016), 16); // 60 FPS
`$3
`bash
Build with exotic capabilities
wasm-pack build --target web --release --out-dir pkg -- --features exoticBuild with learning-enhanced capabilities
wasm-pack build --target web --release --out-dir pkg -- --features learning-enhancedBuild with all exotic capabilities
wasm-pack build --target web --release --out-dir pkg -- --features exotic-full
`---
Core Architecture & Capabilities
Edge-net is a production-grade distributed AI computing platform with ~36,500 lines of Rust code and 177 passing tests.
$3
Four attention mechanisms that answer critical questions for distributed AI:
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ UNIFIED ATTENTION ARCHITECTURE │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ Neural Attention│ │ DAG Attention │ │ Graph Attention │ │
│ │ │ │ │ │ │ │
│ │ "What words │ │ "What steps │ │ "What relations │ │
│ │ matter?" │ │ matter?" │ │ matter?" │ │
│ │ │ │ │ │ │ │
│ │ • Multi-head │ │ • Topo-sort │ │ • GAT-style │ │
│ │ • Q/K/V project │ │ • Critical path │ │ • Edge features │ │
│ │ • Softmax focus │ │ • Parallelism │ │ • Message pass │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ State Space Model (SSM) │ │
│ │ │ │
│ │ "What history still matters?" - O(n) Mamba-style │ │
│ │ │ │
│ │ • Selective gating: What to remember vs forget │ │
│ │ • O(n) complexity: Efficient long-sequence processing │ │
│ │ • Temporal dynamics: dt, A, B, C, D state transitions │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`| Attention Type | Question Answered | Use Case |
|----------------|-------------------|----------|
| Neural | What words matter? | Semantic focus, importance weighting |
| DAG | What steps matter? | Task scheduling, critical path analysis |
| Graph | What relationships matter? | Network topology, peer connections |
| State Space | What history matters? | Long-term memory, temporal patterns |
$3
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ AI Intelligence Layer │
├─────────────────────────────────────────────────────────────────────────────┤
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ HNSW Index │ │ AdapterPool │ │ Federated │ │
│ │ (memory.rs) │ │ (lora.rs) │ │ (federated.rs) │ │
│ │ │ │ │ │ │ │
│ │ • 150x speedup │ │ • LRU eviction │ │ • TopK Sparse │ │
│ │ • O(log N) │ │ • 16 slots │ │ • Byzantine tol │ │
│ │ • Cosine dist │ │ • Task routing │ │ • Rep-weighted │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ DAG Attention │ │ LoraAdapter │ │ GradientGossip │ │
│ │ │ │ │ │ │ │
│ │ • Critical path │ │ • Rank 1-16 │ │ • Error feedback│ │
│ │ • Topo sort │ │ • SIMD forward │ │ • Diff privacy │ │
│ │ • Parallelism │ │ • 4/8-bit quant │ │ • Gossipsub │ │
│ └─────────────────┘ └─────────────────┘ └─────────────────┘ │
└─────────────────────────────────────────────────────────────────────────────┘
`$3
| Component | Capability | Description |
|-----------|------------|-------------|
| Entropy Consensus | Belief convergence | Shannon entropy-based decision making |
| Collective Memory | Pattern sharing | Hippocampal-inspired consolidation and replay |
| Stigmergy | Pheromone trails | Ant colony optimization for task routing |
| Consensus Coordinator | Multi-topic | Parallel consensus on multiple decisions |
$3
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ COMPUTE ACCELERATION STACK │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────────────────────────────────────────────────────────┐ │
│ │ WebGPU Compute Backend │ │
│ │ │ │
│ │ • wgpu-based GPU acceleration (10+ TFLOPS target) │ │
│ │ • Matrix multiplication pipeline (tiled, cache-friendly) │ │
│ │ • Attention pipeline (Flash Attention algorithm) │ │
│ │ • LoRA forward pipeline (<1ms inference) │ │
│ │ • Staging buffer pool (16MB, zero-copy transfers) │ │
│ └─────────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────────────┐ │
│ │ WebWorker Pool │ │
│ │ │ │
│ │ +------------------+ │ │
│ │ | Main Thread | │ │
│ │ | (Coordinator) | │ │
│ │ +--------+---------+ │ │
│ │ | │ │
│ │ +-----+-----+-----+-----+ │ │
│ │ | | | | | │ │
│ │ +--v-+ +-v--+ +--v-+ +--v-+ +--v-+ │ │
│ │ | W1 | | W2 | | W3 | | W4 | | Wn | (up to 16 workers) │ │
│ │ +----+ +----+ +----+ +----+ +----+ │ │
│ │ | | | | | │ │
│ │ +-----+-----+-----+-----+ │ │
│ │ | │ │
│ │ SharedArrayBuffer (when available, zero-copy) │ │
│ └─────────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌────────────────────────┐ ┌────────────────────────┐ │
│ │ WASM SIMD (simd128) │ │ WebGL Compute │ │
│ │ • f32x4 vectorized │ │ • Shader fallback │ │
│ │ • 4x parallel ops │ │ • Universal support │ │
│ │ • All modern browsers│ │ • Fragment matmul │ │
│ └────────────────────────┘ └────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`| Backend | Availability | Performance | Operations |
|---------|-------------|-------------|------------|
| WebGPU | Chrome 113+, Firefox 120+ | 10+ TFLOPS | Matmul, Attention, LoRA |
| WebWorker Pool | All browsers | 4-16x CPU cores | Parallel matmul, dot product |
| WASM SIMD | All modern browsers | 4x vectorized | Cosine distance, softmax |
| WebGL | Universal fallback | Shader compute | Matrix operations |
| CPU | Always available | Loop-unrolled | All operations |
$3
| Pipeline | Purpose | Performance Target |
|----------|---------|-------------------|
| Matmul | Matrix multiplication (tiled) | 10+ TFLOPS |
| Attention | Flash attention (memory efficient) | 2ms for 4K context |
| LoRA | Low-rank adapter forward pass | <1ms inference |
$3
| Operation | Description | Parallelization |
|-----------|-------------|-----------------|
| MatmulPartial | Row-blocked matrix multiply | Rows split across workers |
| DotProductPartial | Partial vector dot products | Segments split across workers |
| VectorOp | Element-wise ops (add, mul, relu, sigmoid) | Ranges split across workers |
| Reduce | Sum, max, min, mean reductions | Hierarchical aggregation |
$3
Workers that finish early can steal tasks from busy workers' queues:
- LIFO for local tasks (cache locality)
- FIFO for stolen tasks (load balancing)
$3
| Feature | Mechanism | Purpose |
|---------|-----------|---------|
| AMM | Automated Market Maker | Dynamic rUv pricing |
| Reputation | Stake-weighted scoring | Trust computation |
| Slashing | Byzantine penalties | Bad actor deterrence |
| Rewards | Contribution tracking | Fair distribution |
$3
| Component | Learning Type | Application |
|-----------|---------------|-------------|
| RAC | Adversarial Coherence | Conflict resolution |
| ReasoningBank | Trajectory learning | Strategy optimization |
| Q-Learning | Reinforcement | Security adaptation |
| Federated | Distributed training | Model improvement |
---
Self-Learning Hooks & MCP Integration
Edge-net integrates with Claude Code's hooks system for continuous self-learning.
$3
`rust
use ruvector_edge_net::learning_scenarios::{
NeuralAttention, DagAttention, GraphAttention, StateSpaceAttention,
AttentionOrchestrator, ErrorLearningTracker, SequenceTracker,
get_ruvector_tools, generate_settings_json,
};// Create unified attention orchestrator
let orchestrator = AttentionOrchestrator::new(
NeuralAttention::new(128, 4), // 128 dim, 4 heads
DagAttention::new(),
GraphAttention::new(64, 4), // 64 dim, 4 heads
StateSpaceAttention::new(256, 0.95), // 256 dim, 0.95 decay
);
// Get comprehensive attention analysis
let analysis = orchestrator.analyze(tokens, &dag, &graph, &history);
`$3
`rust
let mut tracker = ErrorLearningTracker::new();// Record errors for learning
tracker.record_error(ErrorPattern::TypeMismatch, "expected String", "lib.rs", 42);
// Get AI-suggested fixes
let fixes = tracker.get_suggestions("type mismatch");
// ["Use .to_string()", "Use String::from()", ...]
`$3
| Category | Tools | Purpose |
|----------|-------|---------|
| VectorDb |
vector_search, vector_store, vector_query | Semantic similarity |
| Learning | learn_pattern, train_model, get_suggestions | Pattern recognition |
| Memory | remember, recall, forget | Vector memory |
| Swarm | spawn_agent, coordinate, route_task | Multi-agent coordination |
| Telemetry | track_event, get_stats, export_metrics | Usage analytics |
| AgentRouting | suggest_agent, record_outcome, get_routing_table | Agent selection |$3
`bash
Session management
ruvector hooks session-start # Start learning session
ruvector hooks session-end # Save patternsIntelligence
ruvector hooks stats # Show learning stats
ruvector hooks route # Get agent suggestion
ruvector hooks suggest-context # Context suggestionsMemory
ruvector hooks remember -t # Store memory
ruvector hooks recall # Semantic search
`---
Distributed AI Agents & Workers
Edge-net enables spawning AI agents and distributed worker pools across the collective compute network. This transforms passive compute contribution into active distributed AI execution.
$3
`
┌─────────────────────────────────────────────────────────────────────────────┐
│ DISTRIBUTED AI AGENT SYSTEM │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │
│ │ AgentSpawner │ │ WorkerPool │ │ TaskOrchestrator│ │
│ │ │ │ │ │ │ │
│ │ • Type routing │ │ • Load balance │ │ • Workflows │ │
│ │ • rUv costing │ │ • Auto-scaling │ │ • Dependencies │ │
│ │ • Priority mgmt │ │ • Fault tolerant│ │ • Parallel exec │ │
│ └────────┬────────┘ └────────┬────────┘ └────────┬────────┘ │
│ │ │ │ │
│ └───────────────────────┼───────────────────────┘ │
│ │ │
│ ┌────────────┴────────────┐ │
│ │ Edge-Net P2P Network │ │
│ │ (WebRTC Data Channels) │ │
│ └──────────────────────────┘ │
│ │
│ Agent Types: researcher | coder | reviewer | tester | analyst | │
│ optimizer | coordinator | embedder │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
`$3
| Type | Capabilities | Base rUv | Use Cases |
|------|-------------|----------|-----------|
| researcher | search, analyze, summarize, extract | 10 | Codebase analysis, documentation research |
| coder | code, refactor, debug, test | 15 | Feature implementation, bug fixes |
| reviewer | review, audit, validate, suggest | 12 | Code review, security audit |
| tester | test, benchmark, validate, report | 10 | Test creation, coverage analysis |
| analyst | analyze, metrics, report, visualize | 8 | Performance analysis, data insights |
| optimizer | optimize, profile, benchmark, improve | 15 | Performance tuning, efficiency |
| coordinator | orchestrate, route, schedule, monitor | 20 | Multi-agent workflows |
| embedder | embed, vectorize, similarity, search | 5 | Vector operations, semantic search |
$3
`bash
Show Edge-Net information
ruvector edge-net infoSpawn a distributed AI agent
ruvector edge-net spawn researcher "Analyze the authentication system"
ruvector edge-net spawn coder "Implement user profile feature" --max-ruv 50 --priority highCreate and use worker pools
ruvector edge-net pool create --size 10 --capabilities compute,embed
ruvector edge-net pool execute "Process batch embeddings"Run multi-agent workflows
ruvector edge-net workflow code-review
ruvector edge-net workflow feature-dev
ruvector edge-net workflow optimizationCheck network status
ruvector edge-net status
`$3
The following MCP tools are available when
ruvector is configured as an MCP server:| Tool | Description | Parameters |
|------|-------------|------------|
|
edge_net_info | Get Edge-Net information | - |
| edge_net_spawn | Spawn distributed agent | type, task, max_ruv, priority |
| edge_net_pool_create | Create worker pool | min_workers, max_workers |
| edge_net_pool_execute | Execute on pool | task, pool_id |
| edge_net_workflow | Run workflow | name (code-review, feature-dev, etc.) |
| edge_net_status | Network status | - |$3
Pre-built multi-agent workflows:
| Workflow | Steps | Est. rUv | Description |
|----------|-------|----------|-------------|
| code-review | analyst → reviewer → tester → optimizer | 45 | Comprehensive code analysis |
| feature-dev | researcher → coder → tester → reviewer | 60 | Full feature development cycle |
| bug-fix | analyst → coder → tester | 35 | Bug diagnosis and fix |
| optimization | analyst → optimizer → coder → tester | 50 | Performance improvement |
| research | researcher → analyst → embedder | 30 | Deep research with embeddings |
$3
`javascript
import { AgentSpawner, WorkerPool, TaskOrchestrator, AGENT_TYPES } from '@ruvector/edge-net/agents';// Spawn a distributed agent
const spawner = new AgentSpawner(edgeNetNode);
const agent = await spawner.spawn('coder', 'Implement authentication', {
maxRuv: 30,
priority: 'high'
});
// Create a worker pool
const pool = new WorkerPool(edgeNetNode, {
minWorkers: 5,
maxWorkers: 20,
capabilities: ['compute', 'embed', 'analyze']
});
await pool.scale(10);
// Execute tasks on the pool
const result = await pool.execute({
type: 'parallel',
task: 'Process batch data',
data: largeDataset
});
// Run multi-agent workflow
const orchestrator = new TaskOrchestrator(edgeNetNode, spawner);
await orchestrator.runWorkflow('feature-dev', 'Add user authentication');
`$3
Agents and workers emit events for monitoring:
`javascript
agent.on('started', ({ id, type }) => console.log(Agent ${id} started));
agent.on('progress', ({ progress }) => console.log(Progress: ${progress}%));
agent.on('completed', ({ result }) => console.log('Done:', result));
agent.on('error', ({ error }) => console.error('Error:', error));pool.on('scaled', ({ workers }) => console.log(
Pool scaled to ${workers}));
pool.on('task_completed', ({ taskId }) => console.log(Task ${taskId} done));
``| Factor | Impact |
|--------|--------|
| Base Cost | Agent type determines base rUv per task |
| **Task C