Text normalizer initially done for openai/whisper but ported to TS with love by shelf.io!
npm install @shelf/text-normalizer_Originally took from openai/whisperer and rewrote to TS_
TypeScript library for normalizing English text. It provides a utility class EnglishTextNormalizer with methods for normalizing various types of text, such as contractions, abbreviations, and spacing.EnglishTextNormalizer consists of other classes you can reuse independently:
- EnglishSpellingNormalizer - uses a dictionary of English words and their American spelling. The dictionary is stored in a JSON file named english.json
- examples
- EnglishNumberNormalizer - works specifically to normalize text from English words to actually numbers
- examples
- BasicTextNormalizer - provides methods for removing special characters and diacritics from text, as well as splitting words into separate letters.
- examples
```
$ yarn add @shelf/text-normalizer
`js
import {EnglishTextNormalizer} from '@shelf/text-normalizer';
const normalizer = new EnglishTextNormalizer();
console.log(normalizer.normalize("Let's")); // Output: let us
console.log(normalizer.normalize("he's like")); // Output: he is like
console.log(normalizer.normalize("she's been like")); // Output: she has been like
console.log(normalizer.normalize('10km')); // Output: 10 km
console.log(normalizer.normalize('10mm')); // Output: 10 mm
console.log(normalizer.normalize('RC232')); // Output: rc 232
console.log(normalizer.normalize('Mr. Park visited Assoc. Prof. Kim Jr.')); // Output: mister park visited associate professor kim junior
`
`js
import {EnglishTextNormalizer} from 'https://esm.sh/@shelf/text-normalizer';
const normalizer = new EnglishTextNormalizer();
console.log(normalizer.normalize("Let's")); // Output: let us
console.log(normalizer.normalize("he's like!")); // Output: he is like
`
`js
import {EnglishNumberNormalizer} from '@shelf/text-normalizer';
const numberNormalizer = new EnglishNumberNormalizer();
console.log(numberNormalizer.normalize('twenty-five')); // Output: 25
console.log(numberNormalizer.normalize('three million')); // Output: 3000000
console.log(numberNormalizer.normalize('two and a half')); // Output: 2.5
console.log(numberNormalizer.normalize('fifty percent')); // Output: 50%
`
`js
import {EnglishSpellingNormalizer} from '@shelf/text-normalizer';
const spellingNormalizer = new EnglishSpellingNormalizer();
console.log(spellingNormalizer.normalize('colour')); // Output: color
console.log(spellingNormalizer.normalize('organise')); // Output: organize
`
`js
import {BasicTextNormalizer} from '@shelf/text-normalizer';
const basicNormalizer = new BasicTextNormalizer(true, true);
console.log(basicNormalizer.normalize('Café!')); // Output: c a f e
console.log(basicNormalizer.normalize('Hello [World]')); // Output: h e l l o
`
The BasicTextNormalizer constructor accepts two optional boolean parameters:
- removeDiacritics (default: false): If set to true, diacritics will be removed from the text.splitLetters
- (default: false): If set to true, letters will be split into individual characters.
Example:
`js`
const normalizer = new BasicTextNormalizer(true, true);
- The EnglishTextNormalizer combines multiple normalization techniques and may be slower for very large texts. Consider using individual normalizers (EnglishNumberNormalizer, EnglishSpellingNormalizer, or BasicTextNormalizer) if you only need specific functionality.
- For repeated normalization of large amounts of text, consider initializing the normalizer once and reusing it to avoid unnecessary setup time.
- compromise - Natural language processing in JavaScript
`sh``
$ git checkout master
$ yarn version
$ yarn publish
$ git push origin master --tags
MIT © Shelf