Contains helpful Type-Java-Script constructs.
npm install @ssibrahimbas/core@ssibrahimbas/core
Contains helpful Type-Java-Script constructs.
| Maintainer | GitHub | Web |
|-----------------------|-------------------------------------------------|---------------------------------------------------------|
| Sami Salih İbrahimbaş | ssibrahimbas | @ssibrahimbas |
``bash`
$ npm install @ssibrahimbas/core
`bash`
$ yarn add @ssibrahimbas/core
#### For TypeScript
`typescript
import {Queue, PriorityQueue, Stack} from "@ssibrahimbas/core";
interface IQueueType {
name: string;
}
const myQueue = new Queue
interface IPriorityQueueType {
priority: number;
name: string;
}
const myPriorityQueue = new PriorityQueue
interface IstackType {
url: string;
}
const pageHistoryStack = new Stack
`
#### for JavaScript
`javascript
// import {Queue, PriorityQueue, Stack} from "@ssibrahimbas/core"; // for module
const {Queue, PriorityQueue, Stack} = require("@ssibrahimbas/core"); // for commonjs
const myQueue = new Queue();
const myPriorityQueue = new PriorityQueue((a,b) => a - b);
const myStack = new Stack();
`
* Queue
* PriorityQueue
* Stack
The feature of queue is FIFO. That is, fist in, first out.
Type-Java-Script itself has no queue structure. However, we may want to queue some transactions for various reasons. We can even process according to the importance of these queses, see: PriorityQueue.
That's why this post and you are here. @ssibrahimbas/core It, gives the queue structure to Type-Java-Script.
* size
* enqueue(...)
* dequeue()
* dequeueByIndex(...)
* isEmpty()
* peek()
* length()
* toArray()
* toString()
* clone()
FIFO is a very nice rule, but you may not need it. Instead, the priority may need to be delisted first.
We can compare this to the fact that in any queue (for example, the hospital queue), the elderly and children get ahead of other people first.
While this is a very nice feature, it requires more performance than the Queue itself. Because the list must be reordered every time an element is added. You may have some peace of mind about this. We do the sorting on the insertion with BubbleSort, and it has a total O(logn) performance complexity. If we had used the sort` method instead, this complexity would have increased to O(n log n).
Its usage is exactly the same as Queue except for deletion and cloning. The structure running in the background changes.
Another data type not in JavaScript itself is Stack. The feature of stacks is LIFO. That is, last in, first out.
Thanks to this package, you can use the Stack data type on JavaScript.
* push(...)
* length()
* peek()
* isEmpty()
* pop()
* reverse()
* toArray()
* toString()
* clone()
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.size; // return 0
userQueue.enqueue({name: "sami"}); // enqueue sami
userQueue.size // return 1
`
Returns the size of the queue
Returns: number
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"}); // enqueue sami
`
Add element to queue
| Param | Type |
|---------------|---------------|
| element | T - your type |
Returns: void
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"}); // enqueue sami
userQueue.dequeue(); // remove first element
`
Remove first element this queue - cf. FIFO
Returns: void
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"});
userQueue.enqueue({name: "john"});
userQueue.enqueue({name: "evan"});
userQueue.enqueue({name: "salih"});
userQueue.dequeueByIndex(2); // remove evan
`
remove element at specific index from this queue
Returns: boolean
`typescript
const userQueue = new Queue
console.log(userQueue.isEmpty())
`
Is the queue empty?
Returns: boolean
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"}); // enqueue sami
console.log(userQueue.peek())
// result -> {name: 'sami'}
`
Return first element from this queue
Returns: T
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"});
console.log(userQueue.length())
`
Returns the size of the queue - similar to size
Returns: number
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"});
console.log(userQueue.toArray()) // [{name: 'sami'}]
`
Converts queue to array
Returns: Array<T>
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"});
console.log(userQueue.toString()) // "[{name: 'sami'}]"
`
`typescript
type User = {
name: string;
}
const userQueue = new Queue
userQueue.enqueue({name: "sami"});
const employeeQueue = userQueue.clone();
console.log(employeeQueue.toString()) // "[{name: 'sami'}]"
`
Clones the queue
Returns: QueueType<T>
`typescript
type User = {
name: string;
}
const userQueue = new PriorityQueue
userQueue.enqueue({name: "sami", priority: 2});
userQueue.enqueue({name: "salih", priority: 3});
userQueue.enqueue({name: "mehmet", priority: 1});
userQueue.dequeue(); // remove salih
userQueue.dequeue(1); // remove mehmet
`
Remove first element or your index this queue - cf. FIFO
| Param | Type |
|-------------|--------|
| index | number |
Returns: void
`typescript
type User = {
name: string;
}
const userQueue = new PriorityQueue
userQueue.enqueue({name: "sami", priority: 2});
userQueue.enqueue({name: "salih", priority: 3});
const employeeQueue = userQueue.clone();
console.log(employeeQueue.toString()) // "[{name: "salih", priority: 3}, {name: "sami", priority: 2}]"
`
Clones the queue
Returns: PriorityQueueType<T>
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
`
Add element to stack
| Param | Type |
|---------------|---------------|
| element | T - your type |
Returns: void
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.length())
`
Returns the size of the stack
Returns: number
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.peek())
// result -> {url: 'www.itemsatis.com'}
`
Return first element from this stack
Returns: T
`typescript
const pageStack = new Stack
console.log(pageStack.isEmpty())
`
Is the stack empty?
Returns: boolean
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
pageStack.push({url: "www.itempazar.com"});
const last = pageStack.pop(); // return last element and remove
`
Remove last element this stack - cf. LIFO
Returns: T
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
pageStack.push({url: "www.itempazar.com"});
const last = pageStack.pop(); // return last element and remove
`
reverses the stack.
For the above example: the first element declared 'www.itemsatis.com' will be the last element and will appear first in a possible pop call.
Returns: void
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.toArray()) // [{url: 'www.itemsatis.com'}]
`
Converts queue to stack
Returns: Array<T>
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
console.log(pageStack.toString()) // "[{url: "www.itemsatis.com"}]"
`
Converts queue to string
Returns: string
`typescript
type Page = {
url: string;
}
const pageStack = new Stack
pageStack.push({url: "www.itemsatis.com"});
const pageStackClone = pageStack.clone();
console.log(pageStackClone.toString()) // "[{url: "www.itemsatis.com"}]"
``
Clones the queue
Returns: StackType<T>