Calculate the L2-norm of a double-precision floating-point vector.
npm install @stdlib/blas-base-dnrm2We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Calculate the L2-norm of a double-precision floating-point vector.
The [L2-norm][l2-norm] is defined as
``bash`
npm install @stdlib/blas-base-dnrm2
`javascript`
var dnrm2 = require( '@stdlib/blas-base-dnrm2' );
#### dnrm2( N, x, stride )
Computes the [L2-norm][l2-norm] of a double-precision floating-point vector x.
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var z = dnrm2( 3, x, 1 );
// returns 3.0
`
The function has the following parameters:
- N: number of indexed elements.
- x: input [Float64Array][@stdlib/array/float64].x
- stride: index increment for .
The N and stride parameters determine which elements in x are accessed at runtime. For example, to compute the [L2-norm][l2-norm] of every other element in x,
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ] );
var z = dnrm2( 4, x, 2 );
// returns 5.0
`
Note that indexing is relative to the first index. To introduce an offset, use [typed array][mdn-typed-array] views.
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var z = dnrm2( 4, x1, 2 );
// returns 5.0
`
If N is less than or equal to 0, the function returns 0.
#### dnrm2.ndarray( N, x, stride, offset )
Computes the [L2-norm][l2-norm] of a double-precision floating-point vector using alternative indexing semantics.
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 1.0, -2.0, 2.0 ] );
var z = dnrm2.ndarray( 3, x, 1, 0 );
// returns 3.0
`
The function has the following additional parameters:
- offset: starting index for x.
While [typed array][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the [L2-norm][l2-norm] for every other value in x starting from the second value
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var x = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var z = dnrm2.ndarray( 4, x, 2, 1 );
// returns 5.0
`
- If N <= 0, both functions return 0.0.dnrm2()
- corresponds to the [BLAS][blas] level 1 function [dnrm2][dnrm2].
`javascript
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var dnrm2 = require( '@stdlib/blas-base-dnrm2' );
var opts = {
'dtype': 'float64'
};
var x = discreteUniform( 10, -100, 100, opts );
console.log( x );
var out = dnrm2( x.length, x, 1 );
console.log( out );
`
*
`c`
#include "stdlib/blas/base/dnrm2.h"
#### c_dnrm2( N, \*X, stride )
Computes the L2-norm of a double-precision floating-point vector.
`c
const double x[] = { 1.0, -2.0, 2.0 };
double v = c_dnrm2( 3, x, 1 );
// returns 3.0
`
The function accepts the following arguments:
- N: [in] CBLAS_INT number of indexed elements.[in] double*
- X: input array.[in] CBLAS_INT
- stride: index increment for X.
`c`
double c_dnrm2( const CBLAS_INT N, const double *X, const CBLAS_INT stride );
#### c_dnrm2_ndarray( N, \*X, stride, offset )
Computes the L2-norm of a double-precision floating-point vector using alternative indexing semantics.
`c
const double x[] = { 1.0, -2.0, 2.0 };
double v = c_dnrm2_ndarray( 3, x, -1, 2 );
// returns 3.0
`
The function accepts the following arguments:
- N: [in] CBLAS_INT number of indexed elements.[in] double*
- X: input array.[in] CBLAS_INT
- stride: index increment for X.[in] CBLAS_INT
- offset: starting index for X.
`c`
double c_dnrm2_ndarray( const CBLAS_INT N, const double *X, const CBLAS_INT stride, const CBLAS_INT offset );
`c
#include "stdlib/blas/base/dnrm2.h"
#include
int main( void ) {
// Create a strided array:
const double x[] = { 1.0, -2.0, 3.0, -4.0, 5.0, -6.0, 7.0, -8.0 };
// Specify the number of elements:
const int N = 8;
// Specify a stride:
const int strideX = 1;
// Compute the L2-norm:
double l2 = c_dnrm2( N, x, strideX );
// Print the result:
printf( "L2-norm: %lf\n", l2 );
// Compute the L2-norm:
l2 = c_dnrm2_ndarray( N, x, -strideX, N-1 );
// Print the result:
printf( "L2-norm: %lf\n", l2 );
}
`
*
- Blue, James L. 1978. "A Portable Fortran Program to Find the Euclidean Norm of a Vector." _ACM Transactions on Mathematical Software_ 4 (1). New York, NY, USA: Association for Computing Machinery: 15–23. doi:[10.1145/355769.355771][@blue:1978a].
- Anderson, Edward. 2017. "Algorithm 978: Safe Scaling in the Level 1 BLAS." _ACM Transactions on Mathematical Software_ 44 (1). New York, NY, USA: Association for Computing Machinery: 1–28. doi:[10.1145/3061665][@anderson:2017a].
*
- [@stdlib/blas-base/gnrm2][@stdlib/blas/base/gnrm2]: calculate the L2-norm of a vector.
- [@stdlib/blas-base/snrm2][@stdlib/blas/base/snrm2]: calculate the L2-norm of a single-precision floating-point vector.
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/blas-base-dnrm2.svg
[npm-url]: https://npmjs.org/package/@stdlib/blas-base-dnrm2
[test-image]: https://github.com/stdlib-js/blas-base-dnrm2/actions/workflows/test.yml/badge.svg?branch=v0.4.1
[test-url]: https://github.com/stdlib-js/blas-base-dnrm2/actions/workflows/test.yml?query=branch:v0.4.1
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/blas-base-dnrm2/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/blas-base-dnrm2?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/blas-base-dnrm2/tree/deno
[deno-readme]: https://github.com/stdlib-js/blas-base-dnrm2/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/blas-base-dnrm2/tree/umd
[umd-readme]: https://github.com/stdlib-js/blas-base-dnrm2/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/blas-base-dnrm2/tree/esm
[esm-readme]: https://github.com/stdlib-js/blas-base-dnrm2/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/blas-base-dnrm2/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/blas-base-dnrm2/main/LICENSE
[l2-norm]: https://en.wikipedia.org/wiki/Euclidean_distance
[blas]: http://www.netlib.org/blas
[dnrm2]: http://www.netlib.org/lapack/explore-html/de/da4/group__double__blas__level1.html
[@stdlib/array/float64]: https://www.npmjs.com/package/@stdlib/array-float64
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
[@blue:1978a]: https://doi.org/10.1145/355769.355771
[@anderson:2017a]: https://doi.org/10.1145/3061665
[@stdlib/blas/base/gnrm2]: https://www.npmjs.com/package/@stdlib/blas-base-gnrm2
[@stdlib/blas/base/snrm2]: https://www.npmjs.com/package/@stdlib/blas-base-snrm2