Calculate the sum of strided array elements using ordinary recursive summation.
npm install @stdlib/blas-ext-base-gsumorsWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Calculate the sum of strided array elements using ordinary recursive summation.
``bash`
npm install @stdlib/blas-ext-base-gsumors
`javascript`
var gsumors = require( '@stdlib/blas-ext-base-gsumors' );
#### gsumors( N, x, strideX )
Computes the sum of strided array elements using ordinary recursive summation.
`javascript
var x = [ 1.0, -2.0, 2.0 ];
var v = gsumors( x.length, x, 1 );
// returns 1.0
`
The function has the following parameters:
- N: number of indexed elements.
- x: input [Array][mdn-array] or [typed array][mdn-typed-array].
- strideX: stride length.
The N and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:
`javascript
var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ];
var v = gsumors( 4, x, 2 );
// returns 5.0
`
Note that indexing is relative to the first index. To introduce an offset, use [typed array][mdn-typed-array] views.
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
var v = gsumors( 4, x1, 2 );
// returns 5.0
`
#### gsumors.ndarray( N, x, strideX, offsetX )
Computes the sum of strided array elements using ordinary recursive summation and alternative indexing semantics.
`javascript
var x = [ 1.0, -2.0, 2.0 ];
var v = gsumors.ndarray( x.length, x, 1, 0 );
// returns 1.0
`
The function has the following additional parameters:
- offsetX: starting index.
While [typed array][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:
`javascript
var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ];
var v = gsumors.ndarray( 4, x, 2, 1 );
// returns 5.0
`
- If N <= 0, both functions return 0.0.@stdlib/array-base/accessor
- Ordinary recursive summation (i.e., a "simple" sum) is performant, but can incur significant numerical error. If performance is paramount and error tolerated, using ordinary recursive summation is acceptable; in all other cases, exercise due caution.
- Both functions support array-like objects having getter and setter accessors for array element access (e.g., [][@stdlib/array/base/accessor]).dsumors
- Depending on the environment, the typed versions ([][@stdlib/blas/ext/base/dsumors], [ssumors][@stdlib/blas/ext/base/ssumors], etc.) are likely to be significantly more performant.
`javascript
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var gsumors = require( '@stdlib/blas-ext-base-gsumors' );
var x = discreteUniform( 10, -100, 100, {
'dtype': 'float64'
});
console.log( x );
var v = gsumors( x.length, x, 1 );
console.log( v );
`
*
- [@stdlib/blas-ext/base/dsumors][@stdlib/blas/ext/base/dsumors]: calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.
- [@stdlib/blas-ext/base/gnansumors][@stdlib/blas/ext/base/gnansumors]: calculate the sum of strided array elements, ignoring NaN values and using ordinary recursive summation.
- [@stdlib/blas-ext/base/gsum][@stdlib/blas/ext/base/gsum]: calculate the sum of strided array elements.
- [@stdlib/blas-ext/base/gsumkbn2][@stdlib/blas/ext/base/gsumkbn2]: calculate the sum of strided array elements using a second-order iterative Kahan–Babuška algorithm.
- [@stdlib/blas-ext/base/gsumpw][@stdlib/blas/ext/base/gsumpw]: calculate the sum of strided array elements using pairwise summation.
- [@stdlib/blas-ext/base/ssumors][@stdlib/blas/ext/base/ssumors]: calculate the sum of single-precision floating-point strided array elements using ordinary recursive summation.
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/blas-ext-base-gsumors.svg
[npm-url]: https://npmjs.org/package/@stdlib/blas-ext-base-gsumors
[test-image]: https://github.com/stdlib-js/blas-ext-base-gsumors/actions/workflows/test.yml/badge.svg?branch=v0.3.1
[test-url]: https://github.com/stdlib-js/blas-ext-base-gsumors/actions/workflows/test.yml?query=branch:v0.3.1
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/blas-ext-base-gsumors/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/blas-ext-base-gsumors?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/blas-ext-base-gsumors/tree/deno
[deno-readme]: https://github.com/stdlib-js/blas-ext-base-gsumors/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/blas-ext-base-gsumors/tree/umd
[umd-readme]: https://github.com/stdlib-js/blas-ext-base-gsumors/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/blas-ext-base-gsumors/tree/esm
[esm-readme]: https://github.com/stdlib-js/blas-ext-base-gsumors/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/blas-ext-base-gsumors/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/blas-ext-base-gsumors/main/LICENSE
[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray
[@stdlib/array/base/accessor]: https://www.npmjs.com/package/@stdlib/array-base-accessor
[@stdlib/blas/ext/base/dsumors]: https://www.npmjs.com/package/@stdlib/blas-ext-base-dsumors
[@stdlib/blas/ext/base/gnansumors]: https://www.npmjs.com/package/@stdlib/blas-ext-base-gnansumors
[@stdlib/blas/ext/base/gsum]: https://www.npmjs.com/package/@stdlib/blas-ext-base-gsum
[@stdlib/blas/ext/base/gsumkbn2]: https://www.npmjs.com/package/@stdlib/blas-ext-base-gsumkbn2
[@stdlib/blas/ext/base/gsumpw]: https://www.npmjs.com/package/@stdlib/blas-ext-base-gsumpw
[@stdlib/blas/ext/base/ssumors]: https://www.npmjs.com/package/@stdlib/blas-ext-base-ssumors