Round each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward positive infinity.
npm install @stdlib/math-base-special-cceilnWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Round each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward positive infinity.
``bash`
npm install @stdlib/math-base-special-cceiln
`javascript`
var cceiln = require( '@stdlib/math-base-special-cceiln' );
#### cceiln( z, n )
Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward positive infinity.
`javascript
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
// Round components to 2 decimal places:
var z = new Complex128( -3.141592653589793, 3.141592653589793 );
var v = cceiln( z, -2 );
// returns
var re = real( v );
// returns -3.14
var im = imag( v );
// returns 3.15
// If n = 0, cceiln behaves like cceil:
z = new Complex128( 9.99999, 0.1 );
v = cceiln( z, 0 );
// returns
re = real( v );
// returns 10.0
im = imag( v );
// returns 1.0
// Round components to the nearest thousand:
z = new Complex128( 12368.0, -12368.0 );
v = cceiln( z, 3 );
// returns
re = real( v );
// returns 13000.0
im = imag( v );
// returns -12000.0
v = cceiln( new Complex128( NaN, NaN ), 2 );
// returns
re = real( v );
// returns NaN
im = imag( v );
// returns NaN
`
- When operating on [floating-point numbers][ieee754] in bases other than 2, rounding to specified digits can be inexact. For example,
`javascript
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var x = 0.2 + 0.1;
// returns 0.30000000000000004
// Should round components to 0.3:
var v = cceiln( new Complex128( x, x ), -16 );
// returns
var re = real( v );
// returns 0.3000000000000001
var im = imag( v );
// returns 0.3000000000000001
`
`javascript
var uniform = require( '@stdlib/random-base-uniform' ).factory;
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var ceil = require( '@stdlib/math-base-special-ceil' );
var cceiln = require( '@stdlib/math-base-special-cceiln' );
var rand1 = uniform( -50.0, 50.0 );
var rand2 = discreteUniform( -5.0, 0.0 );
var z;
var i;
var n;
for ( i = 0; i < 100; i++ ) {
n = rand2();
z = new Complex128( rand1(), rand1() );
console.log( 'cceiln(%s, %s) = %s', z, n, cceiln( z, n ) );
}
`
*
`c`
#include "stdlib/math/base/special/cceiln.h"
#### stdlib_base_cceiln( z, n )
Rounds each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward positive infinity.
`c
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z = stdlib_complex128( -3.141592653589793, 3.141592653589793 );
stdlib_complex128_t out = stdlib_base_cceiln( z, -2 );
double re = stdlib_complex128_real( out );
// returns -3.14
double im = stdlib_complex128_imag( out );
// returns 3.15
`
The function accepts the following arguments:
- z: [in] stdlib_complex128_t input value.[in] int32_t
- n: integer power of 10.
`c`
stdlib_complex128_t stdlib_base_cceiln( const stdlib_complex128_t z, int32_t n );
`c
#include "stdlib/math/base/special/cceiln.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include
int main() {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, -1.5 ),
stdlib_complex128( 0.0, 0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re1;
double im1;
double re2;
double im2;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
y = stdlib_base_cceiln( v, -2 );
stdlib_complex128_reim( v, &re1, &im1 );
stdlib_complex128_reim( y, &re2, &im2 );
printf( "cceiln(%lf + %lfi, -2) = %lf + %lfi\n", re1, im1, re2, im2 );
}
}
`
*
- [@stdlib/math-base/special/cceil][@stdlib/math/base/special/cceil]: round each component of a double-precision complex floating-point number toward positive infinity.
- [@stdlib/math-base/special/cfloorn][@stdlib/math/base/special/cfloorn]: round each component of a double-precision complex floating-point number to the nearest multiple of 10^n toward negative infinity.
- [@stdlib/math-base/special/croundn][@stdlib/math/base/special/croundn]: round each component of a double-precision complex floating-point number to the nearest multiple of 10^n.
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/math-base-special-cceiln.svg
[npm-url]: https://npmjs.org/package/@stdlib/math-base-special-cceiln
[test-image]: https://github.com/stdlib-js/math-base-special-cceiln/actions/workflows/test.yml/badge.svg?branch=v0.2.3
[test-url]: https://github.com/stdlib-js/math-base-special-cceiln/actions/workflows/test.yml?query=branch:v0.2.3
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/math-base-special-cceiln/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/math-base-special-cceiln?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/math-base-special-cceiln/tree/deno
[deno-readme]: https://github.com/stdlib-js/math-base-special-cceiln/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/math-base-special-cceiln/tree/umd
[umd-readme]: https://github.com/stdlib-js/math-base-special-cceiln/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/math-base-special-cceiln/tree/esm
[esm-readme]: https://github.com/stdlib-js/math-base-special-cceiln/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/math-base-special-cceiln/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/math-base-special-cceiln/main/LICENSE
[ieee754]: https://en.wikipedia.org/wiki/IEEE_754-1985
[@stdlib/math/base/special/cceil]: https://www.npmjs.com/package/@stdlib/math-base-special-cceil
[@stdlib/math/base/special/cfloorn]: https://www.npmjs.com/package/@stdlib/math-base-special-cfloorn
[@stdlib/math/base/special/croundn]: https://www.npmjs.com/package/@stdlib/math-base-special-croundn