Compute the Jacobi elliptic functions sn, cn, and dn.
npm install @stdlib/math-base-special-ellipjWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Compute the [Jacobi elliptic functions][jacobi-elliptic] sn, cn, and dn.
The [Jacobi elliptic functions][jacobi-elliptic] may be defined as the inverse of the [incomplete elliptic integral of the first kind][incomplete-elliptic]. Accordingly, they compute the value φ which satisfies the equation
where the parameter m is related to the modulus k by m = k^2.
``bash`
npm install @stdlib/math-base-special-ellipj
`javascript`
var ellipj = require( '@stdlib/math-base-special-ellipj' );
#### ellipj( u, m )
Computes the [Jacobi elliptic functions][jacobi-elliptic] functions sn, cn, and dn, and the Jacobi amplitude am.
`javascript
var v = ellipj( 0.3, 0.5 );
// returns [ ~0.293, ~0.956, ~0.978, ~0.298 ]
v = ellipj( 0.0, 0.0 );
// returns [ ~0.0, ~1.0, ~1.0, ~0.0 ]
v = ellipj( Infinity, 1.0 );
// returns [ ~1.0, ~0.0, ~0.0, ~1.571 ]
v = ellipj( 0.0, -2.0 );
// returns [ ~0.0, ~1.0, ~1.0, NaN ]
v = ellipj( NaN, NaN );
// returns [ NaN, NaN, NaN, NaN ]
`
#### ellipj.assign( u, m, out, stride, offset )
Computes the Jacobi elliptic functions sn, cn, dn, and Jacobi amplitude am and assigns results to a provided output array.
`javascript
var Float64Array = require( '@stdlib/array-float64' );
var out = new Float64Array( 4 );
var v = ellipj.assign( 0.0, 0.0, out, 1, 0 );
// returns
var bool = ( v === out );
// returns true
`
#### ellipj.sn( u, m )
Computes the Jacobi elliptic function sn of value u with modulus m.
`javascript`
var v = ellipj.sn( 0.3, 0.5 );
// returns ~0.293
#### ellipj.cn( u, m )
Computes the Jacobi elliptic function cn of value u with modulus m.
`javascript`
var v = ellipj.cn( 0.3, 0.5 );
// returns ~0.956
#### ellipj.dn( u, m )
Computes the Jacobi elliptic function dn of value u with modulus m.
`javascript`
var v = ellipj.dn( 0.3, 0.5 );
// returns ~0.978
#### ellipj.am( u, m )
Computes the Jacobi amplitude am of value u with modulus m.
`javascript
var v = ellipj.am( 0.3, 0.5 );
// returns ~0.298
v = ellipj.am( 0.3, 2.0 );
// returns NaN
`
Although sn, cn, and dn may be computed for -∞ < m < ∞, the domain of am is 0 ≤ m ≤ 1. For m < 0 or m > 1, the function returns NaN.
- Functions sn, cn, and dn are valid for -∞ < m < ∞. Values for m < 0 or m > 1 are computed in terms of Jacobi elliptic functions with 0 < m < 1 via the transformations outlined in Equations 16.13 and 16.15 from _The Handbook of Mathematical Functions_ (Abramowitz and Stegun).sn
- If more than one of , cn, dn, or am is to be computed, preferring using ellipj to compute all four values simultaneously.
`javascript
var linspace = require( '@stdlib/array-base-linspace' );
var ellipk = require( '@stdlib/math-base-special-ellipk' );
var ellipj = require( '@stdlib/math-base-special-ellipj' );
var m = 0.7;
var u = linspace( 0.0, ellipk( m ), 100 );
var out;
var i;
for ( i = 0; i < 100; i++ ) {
out = ellipj( u[ i ], m );
console.log( 'sn(%d, %d) = %d', u[ i ], m, out[ 0 ] );
console.log( 'cn(%d, %d) = %d', u[ i ], m, out[ 1 ] );
console.log( 'dn(%d, %d) = %d', u[ i ], m, out[ 2 ] );
console.log( 'am(%d, %d) = %d', u[ i ], m, out[ 3 ] );
}
`
*
`c`
#include "stdlib/math/base/special/ellipj.h"
#### stdlib_base_ellipj( x, m, &sn, &cn, &dn, &am )
Computes the [Jacobi elliptic functions][jacobi-elliptic] functions sn, cn, and dn, and the Jacobi amplitude am.
`c
double sn;
double cn;
double dn;
double am;
stdlib_base_ellipj( 0.3, 0.5, &sn, &cn, &dn, &am );
`
The function accepts the following arguments:
- x: [in] double input value.[in] double
- m: modulus m, equivalent to k².[out] double*
- sn: destination for the sine amplitude.[out] double*
- cn: destination for the cosine amplitude.[out] double*
- dn: destination for the delta amplitude.[out] double*
- am: destination for the Jacobi amplitude.
`c`
void stdlib_base_ellipj( const double u, const double m, double sn, double cn, double dn, double am );
`c
#include "stdlib/math/base/special/ellipj.h"
#include
#include
int main( void ) {
double sn;
double cn;
double dn;
double am;
double x;
int i;
for ( i = 0; i < 100; i++ ) {
x = 2.0 * ( (double)rand() / (double)RAND_MAX );
stdlib_base_ellipj( x, 0.7, &sn, &cn, &dn, &am );
printf( "x: %lf, m: %lf => sn: %lf, cn: %lf, dn: %lf, am: %lf\n", x, 0.7, sn, cn, dn, am );
}
}
`
*
- Fukushima, Toshio. 2009. "Fast computation of complete elliptic integrals and Jacobian elliptic functions." _Celestial Mechanics and Dynamical Astronomy_ 105 (4): 305. doi:[10.1007/s10569-009-9228-z][@fukushima:2009a].
- Fukushima, Toshio. 2015. "Precise and fast computation of complete elliptic integrals by piecewise minimax rational function approximation." _Journal of Computational and Applied Mathematics_ 282 (July): 71–76. doi:[10.1016/j.cam.2014.12.038][@fukushima:2015a].
*
- [@stdlib/math-base/special/ellipe][@stdlib/math/base/special/ellipe]: compute the complete elliptic integral of the second kind.
- [@stdlib/math-base/special/ellipk][@stdlib/math/base/special/ellipk]: compute the complete elliptic integral of the first kind.
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/math-base-special-ellipj.svg
[npm-url]: https://npmjs.org/package/@stdlib/math-base-special-ellipj
[test-image]: https://github.com/stdlib-js/math-base-special-ellipj/actions/workflows/test.yml/badge.svg?branch=v0.4.1
[test-url]: https://github.com/stdlib-js/math-base-special-ellipj/actions/workflows/test.yml?query=branch:v0.4.1
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/math-base-special-ellipj/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/math-base-special-ellipj?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/math-base-special-ellipj/tree/deno
[deno-readme]: https://github.com/stdlib-js/math-base-special-ellipj/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/math-base-special-ellipj/tree/umd
[umd-readme]: https://github.com/stdlib-js/math-base-special-ellipj/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/math-base-special-ellipj/tree/esm
[esm-readme]: https://github.com/stdlib-js/math-base-special-ellipj/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/math-base-special-ellipj/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/math-base-special-ellipj/main/LICENSE
[jacobi-elliptic]: https://en.wikipedia.org/wiki/Jacobi_elliptic_functions
[incomplete-elliptic]: https://en.wikipedia.org/wiki/Elliptic_integral
[@fukushima:2009a]: https://doi.org/10.1007/s10569-009-9228-z
[@fukushima:2015a]: https://doi.org/10.1016/j.cam.2014.12.038
[@stdlib/math/base/special/ellipe]: https://www.npmjs.com/package/@stdlib/math-base-special-ellipe
[@stdlib/math/base/special/ellipk]: https://www.npmjs.com/package/@stdlib/math-base-special-ellipk