Binomial distribution entropy.
npm install @stdlib/stats-base-dists-binomial-entropyWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> [Binomial][binomial-distribution] distribution [entropy][entropy].
The [entropy][entropy] (in [nats][nats]) for a [binomial][binomial-distribution] random variable is
where n is the number of trials and p is the success probability.
``bash`
npm install @stdlib/stats-base-dists-binomial-entropy
`javascript`
var entropy = require( '@stdlib/stats-base-dists-binomial-entropy' );
#### entropy( n, p )
Returns the [entropy][entropy] of a [binomial][binomial-distribution] distribution with number of trials n and success probability p (in [nats][nats]).
`javascript
var v = entropy( 20, 0.1 );
// returns ~1.667
v = entropy( 50, 0.5 );
// returns ~2.682
`
If provided NaN as any argument, the function returns NaN.
`javascript
var v = entropy( NaN, 0.5 );
// returns NaN
v = entropy( 20, NaN );
// returns NaN
`
If provided a number of trials n which is not a nonnegative integer, the function returns NaN.
`javascript
var v = entropy( 1.5, 0.5 );
// returns NaN
v = entropy( -2.0, 0.5 );
// returns NaN
`
If provided a success probability p outside of [0,1], the function returns NaN.
`javascript
var v = entropy( 20, -1.0 );
// returns NaN
v = entropy( 20, 1.5 );
// returns NaN
`
`javascript
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var uniform = require( '@stdlib/random-array-uniform' );
var logEachMap = require( '@stdlib/console-log-each-map' );
var entropy = require( '@stdlib/stats-base-dists-binomial-entropy' );
var opts = {
'dtype': 'float64'
};
var n = discreteUniform( 10, 0, 100, opts );
var p = uniform( 10, 0.0, 1.0, opts );
logEachMap( 'n: %0.4f, p: %0.4f, H(X;n,p): %0.4f', n, p, entropy );
`
*
`c`
#include "stdlib/stats/base/dists/binomial/entropy.h"
#### stdlib_base_dists_binomial_entropy( n, p )
Evaluates the [entropy][entropy] of a [binomial][binomial-distribution] distribution with n the number of trials and p the success probability.
`c`
double out = stdlib_base_dists_binomial_entropy( 20, 0.1 );
// returns ~1.667
The function accepts the following arguments:
- n: [in] int32_t number of trials.[in] double
- p: success probability.
`c`
double stdlib_base_dists_binomial_entropy( const int32_t n, const double p );
`c
#include "stdlib/stats/base/dists/binomial/entropy.h"
#include
#include
#include
static double random_uniform( const double min, const double max ) {
double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
return min + ( v*(max-min) );
}
static int32_t random_int( const int32_t min, const int32_t max ) {
return min + (int32_t)( random_uniform( 0.0, 1.0 ) * ( max - min + 1 ) );
}
int main( void ) {
int32_t n;
double p;
double v;
int i;
for ( i = 0; i < 25; i++ ) {
n = random_int( 0, 100 );
p = random_uniform( 0.0, 1.0 );
v = stdlib_base_dists_binomial_entropy( n, p );
printf( "n: %d, p: %lf, H(X;n,p): %lf\n", n, p, v );
}
}
`
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-binomial-entropy.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-binomial-entropy
[test-image]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/actions/workflows/test.yml/badge.svg?branch=v0.3.1
[test-url]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/actions/workflows/test.yml?query=branch:v0.3.1
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-binomial-entropy/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-binomial-entropy?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-binomial-entropy/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-base-dists-binomial-entropy/main/LICENSE
[binomial-distribution]: https://en.wikipedia.org/wiki/Binomial_distribution
[entropy]: https://en.wikipedia.org/wiki/Entropy_%28information_theory%29
[nats]: https://en.wikipedia.org/wiki/Nat_%28unit%29