Geometric distribution.
npm install @stdlib/stats-base-dists-geometricWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Geometric distribution.
``bash`
npm install @stdlib/stats-base-dists-geometric
`javascript`
var geometric = require( '@stdlib/stats-base-dists-geometric' );
#### geometric
Geometric distribution.
`javascript`
var dist = geometric;
// returns {...}
The namespace contains the following distribution functions:
- [cdf( x, p )][@stdlib/stats/base/dists/geometric/cdf]: geometric distribution cumulative distribution function.
- [logcdf( x, p )][@stdlib/stats/base/dists/geometric/logcdf]: geometric distribution logarithm of cumulative distribution function.
- [logpmf( x, p )][@stdlib/stats/base/dists/geometric/logpmf]: geometric distribution logarithm of probability mass function (PMF).
- [mgf( t, p )][@stdlib/stats/base/dists/geometric/mgf]: geometric distribution moment-generating function (MGF).
- [pmf( x, p )][@stdlib/stats/base/dists/geometric/pmf]: geometric distribution probability mass function (PMF).
- [quantile( r, p )][@stdlib/stats/base/dists/geometric/quantile]: geometric distribution quantile function.
The namespace contains the following functions for calculating distribution properties:
- [entropy( p )][@stdlib/stats/base/dists/geometric/entropy]: geometric distribution entropy.
- [kurtosis( p )][@stdlib/stats/base/dists/geometric/kurtosis]: geometric distribution excess kurtosis.
- [mean( p )][@stdlib/stats/base/dists/geometric/mean]: geometric distribution expected value.
- [median( p )][@stdlib/stats/base/dists/geometric/median]: geometric distribution median.
- [mode( p )][@stdlib/stats/base/dists/geometric/mode]: geometric distribution mode.
- [skewness( p )][@stdlib/stats/base/dists/geometric/skewness]: geometric distribution skewness.
- [stdev( p )][@stdlib/stats/base/dists/geometric/stdev]: geometric distribution standard deviation.
- [variance( p )][@stdlib/stats/base/dists/geometric/variance]: geometric distribution variance.
The namespace contains a constructor function for creating a [geometric][geometric-distribution] distribution object.
- [Geometric( [p] )][@stdlib/stats/base/dists/geometric/ctor]: geometric distribution constructor.
`javascript
var Geometric = require( '@stdlib/stats-base-dists-geometric' ).Geometric;
var dist = new Geometric( 0.2 );
var y = dist.logpmf( 3.0 );
// returns ~-2.279
y = dist.logpmf( 2.3 );
// returns -Infinity
`
`javascript
var geometricRandomFactory = require( '@stdlib/random-base-geometric' ).factory;
var negativeBinomial = require( '@stdlib/stats-base-dists-negative-binomial' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var variance = require( '@stdlib/stats-strided-variance' );
var linspace = require( '@stdlib/array-base-linspace' );
var mean = require( '@stdlib/stats-strided-mean' );
var abs = require( '@stdlib/math-base-special-abs' );
var geometric = require( '@stdlib/stats-base-dists-geometric' );
// Define the success probability:
var p = 0.3; // Probability of success on each trial
// Generate an array of x values (number of failures before first success):
var x = linspace( 0, 10, 11 ); // Geometric distribution is discrete
// Compute the PMF for each x:
var geometricPMF = geometric.pmf.factory( p );
var pmf = filledarrayBy( x.length, 'float64', geometricPMF );
// Compute the CDF for each x:
var geometricCDF = geometric.cdf.factory( p );
var cdf = filledarrayBy( x.length, 'float64', geometricCDF );
// Output the PMF and CDF values:
console.log( 'x values: ', x );
console.log( 'PMF values: ', pmf );
console.log( 'CDF values: ', cdf );
// Compute statistical properties:
var theoreticalMean = geometric.mean( p );
var theoreticalVariance = geometric.variance( p );
var theoreticalSkewness = geometric.skewness( p );
var theoreticalKurtosis = geometric.kurtosis( p );
console.log( 'Theoretical Mean: ', theoreticalMean );
console.log( 'Theoretical Variance: ', theoreticalVariance );
console.log( 'Skewness: ', theoreticalSkewness );
console.log( 'Kurtosis: ', theoreticalKurtosis );
// Generate random samples from the geometric distribution:
var rgeom = geometricRandomFactory( p );
var n = 1000;
var samples = filledarrayBy( n, 'float64', rgeom );
// Compute sample mean and variance:
var sampleMean = mean( n, samples, 1 );
var sampleVariance = variance( n, 1, samples, 1 );
console.log( 'Sample Mean: ', sampleMean );
console.log( 'Sample Variance: ', sampleVariance );
// Demonstrate the memoryless property:
var s = 2.0;
var t = 3.0;
var prob1 = ( 1.0 - geometric.cdf( s + t - 1.0, p ) ) /
( 1.0 - geometric.cdf( s - 1.0, p ) );
var prob2 = 1.0 - geometric.cdf( t - 1.0, p );
console.log( 'P(X > s + t | X > s): ', prob1 );
console.log( 'P(X > t): ', prob2 );
console.log( 'Difference: ', abs( prob1 - prob2 ) );
// Demonstrate that the sum of k independent geometric random variables follows a negative binomial distribution:
var k = 5;
function drawSum() {
var sum = 0;
var j;
for ( j = 0; j < k; j++ ) {
sum += rgeom();
}
return sum;
}
var sumSamples = filledarrayBy( n, 'float64', drawSum );
// Compute sample mean and variance for the sum:
var sumSampleMean = mean( n, sumSamples, 1 );
var sumSampleVariance = variance( n, 1, sumSamples, 1 );
// Theoretical mean and variance of Negative Binomial distribution:
var nbMean = negativeBinomial.mean( k, p );
var nbVariance = negativeBinomial.variance( k, p );
console.log( 'Sum Sample Mean: ', sumSampleMean );
console.log( 'Sum Sample Variance: ', sumSampleVariance );
console.log( 'Negative Binomial Mean: ', nbMean );
console.log( 'Negative Binomial Variance: ', nbVariance );
// Compare sample statistics to theoretical values:
console.log( 'Difference in Mean: ', abs( nbMean - sumSampleMean ) );
console.log( 'Difference in Variance: ', abs( nbVariance - sumSampleVariance ) );
`
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-geometric.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-geometric
[test-image]: https://github.com/stdlib-js/stats-base-dists-geometric/actions/workflows/test.yml/badge.svg?branch=v0.3.1
[test-url]: https://github.com/stdlib-js/stats-base-dists-geometric/actions/workflows/test.yml?query=branch:v0.3.1
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-geometric/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-geometric?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/stats-base-dists-geometric/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-geometric/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-geometric/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-geometric/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-geometric/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-geometric/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-geometric/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-base-dists-geometric/main/LICENSE
[geometric-distribution]: https://en.wikipedia.org/wiki/Geometric_distribution
[@stdlib/stats/base/dists/geometric/ctor]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-ctor
[@stdlib/stats/base/dists/geometric/entropy]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-entropy
[@stdlib/stats/base/dists/geometric/kurtosis]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-kurtosis
[@stdlib/stats/base/dists/geometric/mean]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-mean
[@stdlib/stats/base/dists/geometric/median]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-median
[@stdlib/stats/base/dists/geometric/mode]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-mode
[@stdlib/stats/base/dists/geometric/skewness]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-skewness
[@stdlib/stats/base/dists/geometric/stdev]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-stdev
[@stdlib/stats/base/dists/geometric/variance]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-variance
[@stdlib/stats/base/dists/geometric/cdf]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-cdf
[@stdlib/stats/base/dists/geometric/logcdf]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-logcdf
[@stdlib/stats/base/dists/geometric/logpmf]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-logpmf
[@stdlib/stats/base/dists/geometric/mgf]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-mgf
[@stdlib/stats/base/dists/geometric/pmf]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-pmf
[@stdlib/stats/base/dists/geometric/quantile]: https://www.npmjs.com/package/@stdlib/stats-base-dists-geometric-quantile