Triangular distribution constructor.
npm install @stdlib/stats-base-dists-triangular-ctorWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> Triangular distribution constructor.
``bash`
npm install @stdlib/stats-base-dists-triangular-ctor
`javascript`
var Triangular = require( '@stdlib/stats-base-dists-triangular-ctor' );
#### Triangular( \[a, b, c] )
Returns a [triangular][triangular-distribution] distribution object.
`javascript
var triangular = new Triangular();
var mu = triangular.mean;
// returns 0.5
`
By default, a = 0.0, b = 1.0, and c = 0.5. To create a distribution having a different a (minimum support), b (maximum support), and c (mode), provide the corresponding arguments.
`javascript
var triangular = new Triangular( 2.0, 4.0, 3.5 );
var mu = triangular.mean;
// returns ~3.167
`
*
An [triangular][triangular-distribution] distribution object has the following properties and methods...
#### triangular.a
Minimum support of the distribution. a must be a number smaller than or equal to b and c.
`javascript
var triangular = new Triangular();
var a = triangular.a;
// returns 0.0
triangular.a = 0.5;
a = triangular.a;
// returns 0.5
`
#### triangular.b
Maximum support of the distribution. b must be a number larger than or equal to a and c.
`javascript
var triangular = new Triangular( 2.0, 4.0, 2.5 );
var b = triangular.b;
// returns 4.0
triangular.b = 3.0;
b = triangular.b;
// returns 3.0
`
#### triangular.c
Mode of the distribution. c must be a number larger than or equal to a and smaller than or equal to b.
`javascript
var triangular = new Triangular( 2.0, 5.0, 4.0 );
var c = triangular.c;
// returns 4.0
triangular.c = 3.0;
c = triangular.c;
// returns 3.0
`
*
#### Triangular.prototype.entropy
Returns the [differential entropy][entropy].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var entropy = triangular.entropy;
// returns ~1.886
`
#### Triangular.prototype.kurtosis
Returns the [excess kurtosis][kurtosis].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var kurtosis = triangular.kurtosis;
// returns -0.6
`
#### Triangular.prototype.mean
Returns the [expected value][expected-value].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var mu = triangular.mean;
// returns ~8.667
`
#### Triangular.prototype.median
Returns the [median][median].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var median = triangular.median;
// returns ~8.899
`
#### Triangular.prototype.mode
Returns the [mode][mode].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var mode = triangular.mode;
// returns 10.0
`
#### Triangular.prototype.skewness
Returns the [skewness][skewness].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var skewness = triangular.skewness;
// returns ~-0.422
`
#### Triangular.prototype.stdev
Returns the [standard deviation][standard-deviation].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var s = triangular.stdev;
// returns ~1.7
`
#### Triangular.prototype.variance
Returns the [variance][variance].
`javascript
var triangular = new Triangular( 4.0, 12.0, 10.0 );
var s2 = triangular.variance;
// returns ~2.889
`
*
#### Triangular.prototype.cdf( x )
Evaluates the [cumulative distribution function][cdf] (CDF).
`javascript
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.cdf( 2.5 );
// returns 0.125
`
#### Triangular.prototype.logcdf( x )
Evaluates the natural logarithm of the [cumulative distribution function][cdf] (CDF).
`javascript
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.logcdf( 2.5 );
// returns ~-2.079
`
#### Triangular.prototype.logpdf( x )
Evaluates the natural logarithm of the [probability density function][pdf] (PDF).
`javascript
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.logpdf( 2.5 );
// returns ~-0.693
`
#### Triangular.prototype.pdf( x )
Evaluates the [probability density function][pdf] (PDF).
`javascript
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.pdf( 2.5 );
// returns 0.5
`
#### Triangular.prototype.quantile( p )
Evaluates the [quantile function][quantile-function] at probability p.
`javascript
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var y = triangular.quantile( 0.5 );
// returns 3.0
y = triangular.quantile( 1.9 );
// returns NaN
`
*
`javascript
var Triangular = require( '@stdlib/stats-base-dists-triangular-ctor' );
var triangular = new Triangular( 2.0, 4.0, 3.0 );
var mu = triangular.mean;
// returns 3.0
var median = triangular.median;
// returns 3.0
var s2 = triangular.variance;
// returns ~0.167
var y = triangular.cdf( 2.5 );
// returns 0.125
`
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-triangular-ctor.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-triangular-ctor
[test-image]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/actions/workflows/test.yml/badge.svg?branch=v0.2.3
[test-url]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/actions/workflows/test.yml?query=branch:v0.2.3
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-triangular-ctor/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-triangular-ctor?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-triangular-ctor/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-base-dists-triangular-ctor/main/LICENSE
[triangular-distribution]: https://en.wikipedia.org/wiki/Triangular_distribution
[cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
[pdf]: https://en.wikipedia.org/wiki/Probability_density_function
[quantile-function]: https://en.wikipedia.org/wiki/Quantile_function
[entropy]: https://en.wikipedia.org/wiki/Entropy_%28information_theory%29
[expected-value]: https://en.wikipedia.org/wiki/Expected_value
[kurtosis]: https://en.wikipedia.org/wiki/Kurtosis
[median]: https://en.wikipedia.org/wiki/Median
[mode]: https://en.wikipedia.org/wiki/Mode_%28statistics%29
[skewness]: https://en.wikipedia.org/wiki/Skewness
[standard-deviation]: https://en.wikipedia.org/wiki/Standard_deviation
[variance]: https://en.wikipedia.org/wiki/Variance