Truncated normal distribution probability density function (PDF).
npm install @stdlib/stats-base-dists-truncated-normal-pdfWe believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js. The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases. When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there. To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
About stdlib...
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url]
> [Truncated normal][truncated-normal-distribution] distribution probability density function (PDF).
A normally distributed random variable X conditional on a < X < b is called a [truncated normal][truncated-normal-distribution] distribution.
The [probability density function][pdf] (PDF) for a [truncated normal][truncated-normal-distribution] random variable is
where Phi and phi denote the [cumulative distribution function][cdf] and [density function][pdf] of the [normal][normal-distribution] distribution, respectively, mu is the location and sigma > 0 is the scale parameter of the distribution. a and b are the minimum and maximum support.
``bash`
npm install @stdlib/stats-base-dists-truncated-normal-pdf
`javascript`
var pdf = require( '@stdlib/stats-base-dists-truncated-normal-pdf' );
#### pdf( x, a, b, mu, sigma )
Evaluates the probability density function (PDF) for a [truncated normal][truncated-normal-distribution] distribution with lower limit a, upper limit b, location parameter mu, and scale parameter sigma.
`javascript
var y = pdf( 0.9, 0.0, 1.0, 0.0, 1.0 );
// returns ~0.7795
y = pdf( 0.9, 0.0, 1.0, 0.5, 1.0 );
// returns ~0.9617
y = pdf( 0.9, -1.0, 1.0, 0.5, 1.0 );
// returns ~0.5896
y = pdf( 1.4, 0.0, 1.0, 0.0, 1.0 );
// returns 0.0
y = pdf( -0.9, 0.0, 1.0, 0.0, 1.0 );
// returns 0.0
`
If provided NaN as any argument, the function returns NaN.
`javascript
var y = pdf( NaN, 0.0, 1.0, 0.5, 2.0 );
// returns NaN
y = pdf( 0.0, NaN, 1.0, 0.5, 2.0 );
// returns NaN
y = pdf( 0.0, 0.0, NaN, 0.5, 2.0 );
// returns NaN
y = pdf( 0.6, 0.0, 1.0, NaN, 2.0 );
// returns NaN
y = pdf( 0.6, 0.0, 1.0, 0.5, NaN );
// returns NaN
`
#### pdf.factory( a, b, mu, sigma )
Returns a function for evaluating the [probability density function][pdf] (PDF) for a [truncated normal][truncated-normal-distribution] distribution.
`javascript
var myPDF = pdf.factory( 0.0, 1.0, 0.0, 1.0 );
var y = myPDF( 0.8 );
// returns ~0.849
myPDF = pdf.factory( 0.0, 1.0, 0.5, 1.0 );
y = myPDF( 0.8 );
// returns ~0.996
`
`javascript
var randu = require( '@stdlib/random-base-randu' );
var pdf = require( '@stdlib/stats-base-dists-truncated-normal-pdf' );
var sigma;
var mu;
var a;
var b;
var x;
var y;
var i;
for ( i = 0; i < 25; i++ ) {
a = ( randu() * 80.0 ) - 40.0;
b = a + ( randu() * 80.0 );
x = ( randu() * 40.0 ) + a;
mu = ( randu() * 20.0 ) - 10.0;
sigma = ( randu() * 10.0 ) + 2.0;
y = pdf( x, a, b, mu, sigma );
console.log( 'x: %d, a: %d, b: %d, µ: %d, σ: %d, f(x;a,b,µ,σ): %d', x.toFixed( 4 ), a.toFixed( 4 ), b.toFixed( 4 ), mu.toFixed( 4 ), sigma.toFixed( 4 ), y.toFixed( 4 ) );
}
`
*
This package is part of [stdlib][stdlib], a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop [stdlib][stdlib], see the main project [repository][stdlib].
#### Community
[![Chat][chat-image]][chat-url]
---
See [LICENSE][stdlib-license].
Copyright © 2016-2026. The Stdlib [Authors][stdlib-authors].
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-dists-truncated-normal-pdf.svg
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-dists-truncated-normal-pdf
[test-image]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/actions/workflows/test.yml/badge.svg?branch=v0.2.3
[test-url]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/actions/workflows/test.yml?query=branch:v0.2.3
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-dists-truncated-normal-pdf/main.svg
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-dists-truncated-normal-pdf?branch=main
[chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
[chat-url]: https://stdlib.zulipchat.com
[stdlib]: https://github.com/stdlib-js/stdlib
[stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
[umd]: https://github.com/umdjs/umd
[es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
[deno-url]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/tree/deno
[deno-readme]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/blob/deno/README.md
[umd-url]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/tree/umd
[umd-readme]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/blob/umd/README.md
[esm-url]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/tree/esm
[esm-readme]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/blob/esm/README.md
[branches-url]: https://github.com/stdlib-js/stats-base-dists-truncated-normal-pdf/blob/main/branches.md
[stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-base-dists-truncated-normal-pdf/main/LICENSE
[cdf]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
[pdf]: https://en.wikipedia.org/wiki/Probability_density_function
[normal-distribution]: https://en.wikipedia.org/wiki/Normal_distribution
[truncated-normal-distribution]: https://en.wikipedia.org/wiki/Truncated_normal_distribution