A simple library to check if a dataset follows the Benford's law
npm install benford-lawBenford's law is an observation that in many real-life sets of numerical data, the leading digit is likely to be small. In sets that obey the law, the number 1 appears as the leading significant digit about 30% of the time, while 9 appears as the leading significant digit less than 5% of the time. If the digits were distributed uniformly, they would each occur about 11.1% of the time. Benford's law also makes predictions about the distribution of second digits, third digits, digit combinations, and so on.
To get a better understanding of Benford's law, check out this article.
``bash`
yarn add benford-law
`ts
import {
processBenfordLaw,
generateBenfordLawNumbers,
generateBenfordLawNumber,
} from 'benford-law';
// Generate a single random number that follows Benford's law (between 1 and 1000)
const randomNumber = generateBenfordLawNumber();
console.log(randomNumber);
// Generate an array of 10 random numbers that follow Benford's law
const randomNumbers = generateBenfordLawNumbers(10);
console.log(randomNumbers);
// Analyze an array of numbers to check if it follows Benford's law
// The second parameter (0.01) is the threshold for acceptable deviation
const result = processBenfordLaw(generateBenfordLawNumbers(50000), 0.01);
console.log(result);
// {
// isFollowingBenfordLaw: true,
// firstDigitProbabilities: {
// '1': 0.29908,
// '2': 0.17694,
// '3': 0.1255,
// '4': 0.09742,
// '5': 0.0793,
// '6': 0.06712,
// '7': 0.0571,
// '8': 0.05124,
// '9': 0.0463
// },
// firstDigitCounts: {
// '1': 14954,
// '2': 8847,
// '3': 6275,
// '4': 4871,
// '5': 3965,
// '6': 3356,
// '7': 2855,
// '8': 2562,
// '9': 2315
// },
// firstDigitAccuracies: {
// '1': 0.0019199999999999773,
// '2': 0.0009399999999999964,
// '3': 0.0005000000000000004,
// '4': 0.0004200000000000037,
// '5': 0.0002999999999999947,
// '6': 0.00011999999999999511,
// '7': 0.000900000000000005,
// '8': 0.0002400000000000041,
// '9': 0.00030000000000000165
// }
// }
`
The library includes comprehensive input validation:
`ts
// ❌ These will throw errors:
generateBenfordLawNumbers(-5); // Error: Length must be a positive integer
generateBenfordLawNumbers(0); // Error: Length must be a positive integer
generateBenfordLawNumbers(5.5); // Error: Length must be a positive integer
processBenfordLaw([]); // Error: Numbers array must be non-empty
processBenfordLaw([-1, 2, 3]); // Error: Number must be positive and non-zero
processBenfordLaw([0, 1, 2]); // Error: Number must be positive and non-zero
processBenfordLaw([NaN, 1, 2]); // Error: Number must be finite
processBenfordLaw([1, 2], -0.1); // Error: Threshold must be between 0 and 1
processBenfordLaw([1, 2], 1); // Error: Threshold must be between 0 and 1
// ✅ These are valid:
processBenfordLaw([1, 2, 3]); // OK: positive integers
processBenfordLaw([1.5, 2.7, 3.9]); // OK: positive decimals
processBenfordLaw([0.5, 0.7, 0.9]); // OK: decimals < 1 (uses first significant digit)
processBenfordLaw([123456, 234567]); // OK: large numbers
processBenfordLaw([1, 2, 3], 0.05); // OK: custom threshold (5%)
`
Generates a single random number that follows Benford's Law using logarithmic distribution.
Returns: A number between 1 and 1000 following Benford's Law
Generates an array of random numbers that follow Benford's Law.
Parameters:
- length - The number of random numbers to generate (must be a positive integer)
Returns: An array of numbers following Benford's Law
Throws: Error if length is not a positive integer
Analyzes a dataset to determine if it follows Benford's Law.
Parameters:
- numbers - Array of positive numbers to analyzethreshold
- - Maximum acceptable deviation from Benford's probabilities (default: 0.01 = 1%)benfordProbabilities
- - Expected probabilities for each first digit (default: standard Benford distribution)
Returns:
- isFollowingBenfordLaw - Boolean indicating if the dataset follows Benford's LawfirstDigitCounts
- - Count of occurrences for each first digit (1-9)firstDigitProbabilities
- - Calculated probability for each first digitfirstDigitAccuracies` - Absolute deviation from expected Benford probabilities
-
Throws: Error if the array is empty, contains invalid numbers, or threshold is invalid