Plug-and-play bot/human prediction API for websites using behavioral data. (cloudfare/google-v3 competitor)
npm install captchured-api``bash`
npm install captchured-api
You can send requests directly to the hosted API:
``
POST https://captchured.shashw1t.in/
See the API Documentation below for request/response format.
---
You can run your own instance:
`jsServer running on http://localhost:${port}
const createApp = require('captchured-api');
const app = createApp();
const port = process.env.PORT || 3000;
app.listen(port, () => {
console.log();`
});
Or, from the command line:
`bash`
npx captchured-apior if installed globally
captchured-api
---
``
POST /
- URL: https://captchured.shashw1t.in/POST
- Method: application/json
- Content-Type:
Send a JSON object with the following structure:
`json`
{
"key_count": 3,
"key_sequence": ["a", "b", "c"],
"time_delay": [100, 120],
"mouse_movements": [
{
"x": 100,
"y": 200,
"timeDelay": 50,
"timestamp": 1710000000000
}
],
"mouse_clicks": [
{
"x": 120,
"y": 220,
"timestamp": 1710000000100
}
],
"total_time": 1500,
"environment": {
"timezone": "Asia/Kolkata",
"language": "en-US",
"cpu": 8,
"browser": "Mozilla/5.0",
"os": "Windows",
"deviceType": "Desktop"
}
}
#### Field Descriptions
- key_count: Number of keypresses.key_sequence
- : Array of keys pressed.time_delay
- : Array of delays (ms) between keypresses.mouse_movements
- : Array of mouse movement objects.mouse_clicks
- : Array of mouse click objects.total_time
- : Total time spent (ms).environment
- : Object with user environment details.
Returns a JSON object:
`json`
{
"message": "Data received and processed successfully",
"cookies": undefined
}
When ML model integration is ready, the response will include a prediction result.
`js`
fetch('https://captchured.shashw1t.in/', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
key_count: 3,
key_sequence: ['a', 'b', 'c'],
time_delay: [100, 120],
mouse_movements: [],
mouse_clicks: [],
total_time: 1500,
environment: {
timezone: 'Asia/Kolkata',
language: 'en-US',
cpu: 8,
browser: 'Mozilla/5.0',
os: 'Windows',
deviceType: 'Desktop'
}
})
})
.then(res => res.json())
.then(data => console.log(data));
To use the API from your own frontend, send a POST request to the / endpoint with the required data. fetch
You can use , axios, or any HTTP client in your frontend code.
`js`
fetch('https://captchured.shashw1t.in/', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
key_count: 3,
key_sequence: ['a', 'b', 'c'],
time_delay: [100, 120],
mouse_movements: [
{ x: 100, y: 200, timeDelay: 50, timestamp: 1710000000000 }
],
mouse_clicks: [
{ x: 120, y: 220, timestamp: 1710000000100 }
],
total_time: 1500,
environment: {
timezone: 'Asia/Kolkata',
language: 'en-US',
cpu: 8,
browser: 'Mozilla/5.0',
os: 'Windows',
deviceType: 'Desktop'
}
})
})
.then(res => res.json())
.then(data => {
// Handle the prediction result or response
console.log(data);
// Example: alert(data.predictionResult);
})
.catch(error => {
console.error('Error:', error);
});
1. Collect user behavior data in your frontend (keypresses, mouse movements, etc.).
2. Format the data as shown above.
3. Send a POST request to https://captchured.shashw1t.in/`.
4. Handle the response in your frontend (e.g., display prediction to the user).
---
MIT