Computes the quadratic mean (root mean square).
npm install compute-qmeanQuadratic Mean
===
[![NPM version][npm-image]][npm-url] [![Build Status][travis-image]][travis-url] [![Coverage Status][coveralls-image]][coveralls-url] [![Dependencies][dependencies-image]][dependencies-url]
> Computes the quadratic mean (root mean square; rms).
The quadratic mean is defined as
where x_0, x_1,...,x_{N-1} are individual data values and N is the total number of values in the data set.
`` bash`
$ npm install compute-qmean
For use in the browser, use browserify.
` javascript`
var qmean = require( 'compute-qmean' );
#### qmean( x[, opts] )
Computes the quadratic mean (root mean square). x may be either an array, typed array, or matrix.
` javascript
var data, mu;
data = [ 2, 7, 3, -3, 9 ];
mu = qmean( data );
// returns ~5.5136
data = new Int8Array( data );
mu = qmean( data );
// returns ~5.5136
`
For non-numeric arrays, provide an accessor function for accessing array values.
` javascript
var data = [
{'x':2},
{'x':7},
{'x':3},
{'x':-3},
{'x':9}
];
function getValue( d, i ) {
return d.x;
}
var mu = qmean( data, {
'accessor': getValue
});
// returns ~5.5136
`
If provided a matrix, the function accepts the following options:
* __dim__: dimension along which to compute the quadratic mean. Default: 2 (along the columns).matrix
* __dtype__: output data type. Default: float64.
By default, the function computes the quadratic mean along the columns (dim=2).
` javascript
var matrix = require( 'dstructs-matrix' ),
data,
mat,
mu,
i;
data = new Int8Array( 25 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = i;
}
mat = matrix( data, [5,5], 'int8' );
/*
[ 0 1 2 3 4
5 6 7 8 9
10 11 12 13 14
15 16 17 18 19
20 21 22 23 24 ]
*/
mu = qmean( mat );
/*
[ 2.449
7.141
12.083
17.059
22.045 ]
*/
`
To compute the quadratic mean along the rows, set the dim option to 1.
` javascript`
mu = qmean( mat, {
'dim': 1
});
/*
[ 12.247, 13.077, 13.928, 14.799, 15.684 ]
*/
By default, the output matrix data type is float64. To specify a different output data type, set the dtype option.
` javascript
mu = qmean( mat, {
'dim': 1,
'dtype': 'uint8'
});
/*
[ 12, 13, 13, 14, 15 ]
*/
var dtype = mu.dtype;
// returns 'uint8'
`
If provided a matrix having either dimension equal to 1, the function treats the matrix as a typed array and returns a numeric value.
` javascript
data = [ 2, 4, 5, 3, 8, 2 ];
// Row vector:
mat = matrix( new Int8Array( data ), [1,6], 'int8' );
mu = qmean( mat );
// returns ~4.509
// Column vector:
mat = matrix( new Int8Array( data ), [6,1], 'int8' );
mu = qmean( mat );
// returns ~4.509
`
If provided an empty array, typed array, or matrix, the function returns null.
` javascript
mu = qmean( [] );
// returns null
mu = qmean( new Int8Array( [] ) );
// returns null
mu = qmean( matrix( [0,0] ) );
// returns null
mu = qmean( matrix( [0,10] ) );
// returns null
mu = qmean( matrix( [10,0] ) );
// returns null
`
` javascript
var matrix = require( 'dstructs-matrix' ),
qmean = require( 'compute-qmean' );
var data,
mat,
mu,
i;
// ----
// Plain arrays...
data = new Array( 1000 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = Math.random() * 100;
}
mu = qmean( data );
console.log( 'Arrays: %d\n', mu );
// ----
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < data.length; i++ ) {
data[ i ] = {
'x': data[ i ]
};
}
mu = qmean( data, {
'accessor': getValue
});
console.log( 'Accessors: %d\n', mu );
// ----
// Typed arrays...
data = new Int32Array( 1000 );
for ( i = 0; i < data.length; i++ ) {
data[ i ] = Math.random() * 100;
}
mu = qmean( data );
console.log( 'Typed arrays: %d\n', mu );
// ----
// Matrices (along rows)...
mat = matrix( data, [100,10], 'int32' );
mu = qmean( mat, {
'dim': 1
});
console.log( 'Matrix (rows): %s\n', mu.toString() );
// ----
// Matrices (along columns)...
mu = qmean( mat, {
'dim': 2
});
console.log( 'Matrix (columns): %s\n', mu.toString() );
// ----
// Matrices (custom output data type)...
mu = qmean( mat, {
'dtype': 'uint8'
});
console.log( 'Matrix (%s): %s\n', mu.dtype, mu.toString() );
`
To run the example code from the top-level application directory,
` bash`
$ node ./examples/index.js
The algorithm to compute the quadratic mean first calculates the _L2_ norm before dividing by the square root of the number of elements. This particular implementation attempts to avoid overflow and underflow and is accurate to <1e-13 compared to the canonical formula for calculating the root mean square.
- Dahlquist, Germund and Bjorck, Ake. _Numerical Methods in Scientific Computing_.
- Blue, James (1978) "A Portable Fortran Program To Find the Euclidean Norm of a Vector". _ACM Transactions on Mathematical Software_.
- Higham, Nicholas J. _Accuracy and Stability of Numerical Algorithms, Second Edition_.
This module implements a one-pass algorithm proposed by S.J. Hammarling.
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
` bash`
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
` bash`
$ make test-cov
Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,
` bash``
$ make view-cov
---
Copyright © 2014-2015. The Compute.io Authors.
[npm-image]: http://img.shields.io/npm/v/compute-qmean.svg
[npm-url]: https://npmjs.org/package/compute-qmean
[travis-image]: http://img.shields.io/travis/compute-io/qmean/master.svg
[travis-url]: https://travis-ci.org/compute-io/qmean
[coveralls-image]: https://img.shields.io/coveralls/compute-io/qmean/master.svg
[coveralls-url]: https://coveralls.io/r/compute-io/qmean?branch=master
[dependencies-image]: http://img.shields.io/david/compute-io/qmean.svg
[dependencies-url]: https://david-dm.org/compute-io/qmean
[dev-dependencies-image]: http://img.shields.io/david/dev/compute-io/qmean.svg
[dev-dependencies-url]: https://david-dm.org/dev/compute-io/qmean
[github-issues-image]: http://img.shields.io/github/issues/compute-io/qmean.svg
[github-issues-url]: https://github.com/compute-io/qmean/issues