Copilot Toolkit - Native AI Agents & Skills for GitHub Copilot (v2026)
npm install cp-toolkit> GitHub Copilot Agent Toolkit - Initialize and manage AI agents for your project
``bashGlobal install
npm install -g cp-toolkit
Quick Start
`bash
Initialize in current directory
cp-toolkit initInitialize in new directory
cp-toolkit init my-projectSkip prompts (use defaults)
cp-toolkit init -y
`Commands
$3
Initialize cp-toolkit with GitHub Copilot 2026 structure:
`
.github/
├── copilot-instructions.md # Global instructions (always active)
├── agents/ # Agent definitions
│ ├── orchestrator.md
│ ├── frontend-specialist.md
│ └── backend-specialist.md
└── instructions/ # Path-specific rules
├── typescript.instructions.md
├── python.instructions.md
└── security.instructions.mdAGENTS.md # Universal AI instructions
.vscode/mcp.json # MCP server configuration
`Options:
-
-y, --yes - Skip prompts, use defaults
- -f, --force - Overwrite existing configuration$3
Add new components:
`bash
Add a new agent
cp-toolkit add agent my-specialistAdd a new instruction
cp-toolkit add instruction golang
`$3
List available components:
`bash
cp-toolkit list agents # List all agents
cp-toolkit list instructions # List all instructions
cp-toolkit list all # List everything
`$3
Check configuration and diagnose issues:
`bash
cp-toolkit doctor
`GitHub Copilot Integration
After initialization, GitHub Copilot automatically loads:
1. copilot-instructions.md - Always active, global rules
2. agents/*.md - Invokable with
@agent-name
3. instructions/*.instructions.md - Applied based on applyTo patterns$3
In GitHub Copilot Chat:
`
@frontend-specialist Create a responsive navbar component
@security-auditor Review this authentication flow
@orchestrator Implement user dashboard with API
`$3
Instructions are applied automatically based on file patterns:
`yaml
typescript.instructions.md
---
applyTo: "/.ts,/.tsx"
---TypeScript Guidelines
- Enable strict mode
- No any types
...
`Structure
| File | Purpose |
|------|---------|
|
.github/copilot-instructions.md | Global instructions (always active) |
| .github/agents/*.md | Agent definitions |
| .github/instructions/*.instructions.md | Path-specific rules |
| AGENTS.md | Universal AI instructions |
| .vscode/mcp.json | MCP server configuration |
| .github/cp-kit-models.yaml | AI model allocation matrix |Architect-Builder Strategy
cp-toolkit implements the Architect-Builder Pattern for optimal AI agent performance. This strategy separates reasoning from execution:
$3
`
┌─────────────────────────────────────────────────────────────────┐
│ SINGLE MODE HYBRID MODE (Architect-Builder) │
│ ───────────── ─────────────────────────────── │
│ │
│ ┌─────────────────┐ PLANNER EXECUTOR │
│ │ High-IQ Model │ (Architect) (Builder) │
│ │ Pure Reasoning │ ┌──────────┐ ┌──────────┐ │
│ └─────────────────┘ │ temp 0.1 │ → │ temp 0.3 │ │
│ │ Strategy │ │ Code Gen │ │
│ • orchestrator └──────────┘ └──────────┘ │
│ • security-auditor │
│ • debugger • backend-specialist │
│ • documentation-writer • frontend-specialist │
│ • devops-engineer │
└─────────────────────────────────────────────────────────────────┘
`$3
| Mode | Temperature | Use Case |
|------|-------------|----------|
| Single | 0.1 | Pure reasoning tasks (analysis, planning, auditing) |
| Hybrid Planner | 0.1 | Strategic thinking, architecture decisions |
| Hybrid Executor | 0.3 | Code generation, implementation |
$3
1. Leadership & Strategy (Single Mode)
-
orchestrator, product-manager, product-owner, project-planner
2. Development Core (Hybrid Mode)
- backend-specialist, frontend-specialist, mobile-developer, game-developer3. Infrastructure & Ops (Hybrid Mode)
-
devops-engineer, database-architect, security-auditor, penetration-tester4. Quality & Optimization (Hybrid Mode)
-
qa-automation-engineer, test-engineer, performance-optimizer, debugger5. Specialists & Research (Mixed)
-
code-archaeologist, documentation-writer, seo-specialist, explorer-agent$3
- Planner (Architect): Uses high-reasoning models with low temperature for accurate strategic decisions
- Executor (Builder): Uses fast code-generation models with slightly higher temperature for creative implementation
- Cost Optimization: Expensive models only for planning; economical models for bulk code generation
- Quality Assurance: Clear separation prevents "hallucination drift" in long implementations
$3
The
cp-kit-models.yaml file defines the model allocation:`yaml
agents:
backend-specialist:
mode: "hybrid"
planner:
model: "gpt-5.2"
task: "API architecture, security and data modeling"
executor:
model: "gpt-5.2-codex"
task: "Route and service implementation with perfect typing"
``MIT