CROAK - Computer Recognition Orchestration Agent Kit. Agentic framework for object detection model development.
npm install croak-cv> šø CROAK - Computer Recognition Orchestration Agent Kit
The official installer and CLI for CROAK, an agentic framework for object detection model development.
``bashInstall from npm
npx croak-cv init
What is CROAK?
CROAK is an open-source agentic framework that guides you through the entire object detection pipeline:
- Data Preparation - Scan, validate, and prepare your datasets
- Annotation - Integration with vfrog.ai for professional labeling
- Training - Guided model training with GPU support (local or Modal.com)
- Evaluation - Comprehensive model analysis and diagnostics
- Deployment - Deploy to cloud (vfrog.ai) or edge (TensorRT/ONNX)
CLI Commands
| Command | Description |
|---------|-------------|
|
croak init | Initialize CROAK in current directory |
| croak doctor | Check environment and dependencies |
| croak upgrade | Upgrade to latest version |
| croak help | Show help |$3
Initializes a new CROAK project with interactive configuration:
`bash
croak init
`Options:
-
-y, --yes - Skip prompts, use defaults
- --name - Set project name
- --no-vfrog - Skip vfrog.ai integration
- --no-modal - Skip Modal.com GPU setupWhat it creates:
`
your-project/
āāā .croak/
ā āāā config.yaml # Project configuration
ā āāā pipeline-state.yaml # Pipeline progress tracking
ā āāā agents/ # Agent definitions
ā āāā workflows/ # Workflow specifications
ā āāā knowledge/ # Knowledge base
ā āāā contracts/ # Handoff contracts
āāā data/
ā āāā raw/ # Raw images
ā āāā processed/ # Processed datasets
āāā training/
ā āāā configs/ # Training configurations
ā āāā scripts/ # Training scripts
ā āāā experiments/ # Experiment outputs
āāā evaluation/
ā āāā reports/ # Evaluation reports
āāā deployment/
āāā edge/ # Edge deployment packages
`$3
Checks your environment for compatibility:
`bash
croak doctor
`Checks performed:
- Python 3.10+ installation
- Required Python packages (ultralytics, torch, etc.)
- NVIDIA GPU availability
- Modal.com configuration
- vfrog.ai API key
- Git installation
Options:
-
--fix - Attempt to fix issues automatically$3
Upgrades CROAK to the latest version:
`bash
croak upgrade
`Options:
-
--check - Check for updates without installingRequirements
- Node.js 18.0.0 or higher
- Python 3.10 or higher
- Git (recommended)
- NVIDIA GPU (optional - can use Modal.com for cloud GPU)
Environment Variables
| Variable | Description | Required |
|----------|-------------|----------|
|
VFROG_API_KEY | vfrog.ai API key for annotation | For annotation |
| MODAL_TOKEN_ID | Modal.com token (set via modal setup) | For cloud GPU |Configuration
After initialization, edit
.croak/config.yaml to customize:`yaml
version: "1.0"project:
name: "my-detection-project"
task_type: "detection"
training:
framework: "ultralytics"
architecture: "yolov8s"
epochs: 100
batch_size: 16
compute:
provider: "modal" # or "local"
gpu_type: "T4"
tracking:
backend: "mlflow" # or "wandb"
`Next Steps After Init
1. Add your images to
data/raw/2. Scan your data:
`bash
croak scan
`3. Prepare your dataset:
`bash
croak prepare
`4. Train your model:
`bash
croak train
`5. Evaluate results:
`bash
croak evaluate
`6. Deploy:
`bash
croak deploy
`Troubleshooting
$3
Ensure Python 3.10+ is installed and in your PATH:
`bash
python3 --version
`$3
1. Verify the key at https://vfrog.ai/settings/api
2. Ensure the environment variable is set:
`bash
echo $VFROG_API_KEY
`$3
CROAK will automatically use Modal.com for cloud GPU training. Run:
`bash
pip install modal
modal setup
``- Documentation: https://github.com/vfrog-ai/croak
- Issues: https://github.com/vfrog-ai/croak/issues
- vfrog.ai: https://vfrog.ai
MIT License - see LICENSE for details.
---
šø CROAK ā by vfrog.ai