A lightweight JavaScript library for essential feature engineering tasks in machine learning. Provides utilities for normalization, standardization, one-hot encoding and missing value handling. Designed for simplicity and performance in both Node.js and b
npm install datamagic-mldatamagic-ml via npm:
bash
npm install datamagic-ml
`
Or using yarn:
`bash
yarn add datamagic-ml
`
Usage
Importing the Library:
`bash
const { MinMaxScaler, StandardScaler, OneHotEncoder, CleanMissings } = require('datamagic-ml');
`
Min-Max Scaling
`bash
const scaler = new MinMaxScaler();
const data = [1, 2, 3, 4, 5];
scaler.fit(data);
console.log(scaler.transform(data));
`
Standardization
`bash
const stdScaler = new StandardScaler();
const data = [1, 2, 3, 4, 5];
stdScaler.fit(data);
console.log(stdScaler.transform(data));
`
One-Hot Encoding
`bash
const encoder = new OneHotEncoder();
encoder.fit(['red', 'green', 'blue']);
console.log(encoder.transform(['green', 'red', 'yellow', 'blue']));
`
Handling Missing Values
`bash
const testArray = [1, null, 3, 4, NaN, 6];
console.log(CleanMissings(testArray, 'mean'));
console.log(CleanMissings(testArray, 'median'));
console.log(CleanMissings(testArray, 'constant', 0));
``