Rayleigh distribution entropy.
npm install distributions-rayleigh-entropyEntropy
===
[![NPM version][npm-image]][npm-url] [![Build Status][travis-image]][travis-url] [![Coverage Status][codecov-image]][codecov-url] [![Dependencies][dependencies-image]][dependencies-url]
> Rayleigh distribution entropy.
The entropy for a Rayleigh random variable is
where gamma is the Euler–Mascheroni constant and sigma > 0 is the scale parameter of the distribution.
`` bash`
$ npm install distributions-rayleigh-entropy
For use in the browser, use browserify.
` javascript`
var entropy = require( 'distributions-rayleigh-entropy' );
#### entropy( sigma[, opts] )
Computes the entropy for a Rayleigh distribution with parameter sigma. sigma may be either a number, an array, a typed array, or a matrix.
` javascript
var matrix = require( 'dstructs-matrix' ),
data,
mat,
out,
i;
out = entropy( 0.5 );
// returns ~0.249
sigma = [ 0.5, 1, 2, 4 ];
out = entropy( sigma );
// returns [ ~0.249, ~0.942, ~1.635, ~2.328 ]
sigma = new Float32Array( sigma );
out = entropy( sigma );
// returns Float64Array( [~0.249,~0.942,~1.635,~2.328] )
sigma = matrix( [ 0.5, 1, 2, 4 ], [2,2] );
/*
[ 0.5 1
2 4 ]
*/
out = entropy( sigma );
/*
[ ~0.249 ~0.942
~1.635 ~2.328 ]
*/
`
The function accepts the following options:
* __accessor__: accessor function for accessing array values.typed array
* __dtype__: output or matrix data type. Default: float64.boolean
* __copy__: indicating if the function should return a new data structure. Default: true.'.'
* __path__: deepget/deepset key path.
* __sep__: deepget/deepset key path separator. Default: .
For non-numeric arrays, provide an accessor function for accessing array values.
` javascript
var sigma = [
[0,0.5],
[1,1],
[2,2],
[3,4]
];
function getValue( d, i ) {
return d[ 1 ];
}
var out = entropy( sigma, {
'accessor': getValue
});
// returns [ ~0.249, ~0.942, ~1.635, ~2.328 ]
`
To deepset an object array, provide a key path and, optionally, a key path separator.
` javascript
var sigma = [
{'x':[9,0.5]},
{'x':[9,1]},
{'x':[9,2]},
{'x':[9,4]}
];
var out = entropy( sigma, {
'path': 'x|1',
'sep': '|'
});
/*
[
{'x':[9,~0.249]},
{'x':[9,~0.942]},
{'x':[9,~1.635]},
{'x':[9,~2.328]},
]
*/
var bool = ( data === out );
// returns true
`
By default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).
` javascript
var sigma, out;
sigma = new Float64Array( [ 0.5,1,2,4 ] );
out = entropy( sigma, {
'dtype': 'int32'
});
// returns Int32Array( [ 0,0,1,2 ] )
// Works for plain arrays, as well...
out = entropy( [0.5,1,2,4], {
'dtype': 'int32'
});
// returns Int32Array( [ 0,0,1,2 ] )
`
By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.
` javascript
var sigma,
bool,
mat,
out,
i;
sigma = [ 0.5, 1, 2, 4 ];
out = entropy( sigma, {
'copy': false
});
// returns [ ~0.249, ~0.942, ~1.635, ~2.328 ]
bool = ( data === out );
// returns true
mat = matrix( [ 0.5, 1, 2, 4 ], [2,2] );
/*
[ 0.5 1
2 4 ]
*/
out = entropy( mat, {
'copy': false
});
/*
[ ~0.249 ~0.942
~1.635 ~2.328 ]
*/
bool = ( mat === out );
// returns true
`
* If an element is __not__ a positive number, the entropy is NaN.
` javascript
var sigma, out;
out = entropy( -1 );
// returns NaN
out = entropy( 0 );
// returns NaN
out = entropy( null );
// returns NaN
out = entropy( true );
// returns NaN
out = entropy( {'a':'b'} );
// returns NaN
out = entropy( [ true, null, [] ] );
// returns [ NaN, NaN, NaN ]
function getValue( d, i ) {
return d.x;
}
sigma = [
{'x':true},
{'x':[]},
{'x':{}},
{'x':null}
];
out = entropy( sigma, {
'accessor': getValue
});
// returns [ NaN, NaN, NaN, NaN ]
out = entropy( sigma, {
'path': 'x'
});
/*
[
{'x':NaN},
{'x':NaN},
{'x':NaN,
{'x':NaN}
]
*/
`
* Be careful when providing a data structure which contains non-numeric elements and specifying an integer output data type, as NaN values are cast to 0.
` javascript`
var out = entropy( [ true, null, [] ], {
'dtype': 'int8'
});
// returns Int8Array( [0,0,0] );
` javascript
var matrix = require( 'dstructs-matrix' ),
entropy = require( 'distributions-rayleigh-entropy' );
var sigma,
mat,
out,
tmp,
i;
// Plain arrays...
sigma = new Array( 10 );
for ( i = 0; i < sigma.length; i++ ) {
sigma[ i ] = i + 1;
}
out = entropy( sigma );
// Object arrays (accessors)...
function getValue( d ) {
return d.x;
}
for ( i = 0; i < sigma.length; i++ ) {
sigma[ i ] = {
'x': sigma[ i ]
};
}
out = entropy( sigma, {
'accessor': getValue
});
// Deep set arrays...
for ( i = 0; i < sigma.length; i++ ) {
sigma[ i ] = {
'x': [ i, sigma[ i ].x ]
};
}
out = entropy( sigma, {
'path': 'x/1',
'sep': '/'
});
// Typed arrays...
sigma = new Float64Array( 10 );
for ( i = 0; i < sigma.length; i++ ) {
sigma[ i ] = i + 1;
}
out = entropy( sigma );
// Matrices...
mat = matrix( sigma, [5,2], 'float64' );
out = entropy( mat );
// Matrices (custom output data type)...
out = entropy( mat, {
'dtype': 'uint8'
});
`
To run the example code from the top-level application directory,
` bash`
$ node ./examples/index.js
Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:
` bash`
$ make test
All new feature development should have corresponding unit tests to validate correct functionality.
This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:
` bash`
$ make test-cov
Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,
` bash``
$ make view-cov
---
Copyright © 2015. The Compute.io Authors.
[npm-image]: http://img.shields.io/npm/v/distributions-rayleigh-entropy.svg
[npm-url]: https://npmjs.org/package/distributions-rayleigh-entropy
[travis-image]: http://img.shields.io/travis/distributions-io/rayleigh-entropy/master.svg
[travis-url]: https://travis-ci.org/distributions-io/rayleigh-entropy
[codecov-image]: https://img.shields.io/codecov/c/github/distributions-io/rayleigh-entropy/master.svg
[codecov-url]: https://codecov.io/github/distributions-io/rayleigh-entropy?branch=master
[dependencies-image]: http://img.shields.io/david/distributions-io/rayleigh-entropy.svg
[dependencies-url]: https://david-dm.org/distributions-io/rayleigh-entropy
[dev-dependencies-image]: http://img.shields.io/david/dev/distributions-io/rayleigh-entropy.svg
[dev-dependencies-url]: https://david-dm.org/dev/distributions-io/rayleigh-entropy
[github-issues-image]: http://img.shields.io/github/issues/distributions-io/rayleigh-entropy.svg
[github-issues-url]: https://github.com/distributions-io/rayleigh-entropy/issues