High-performance LOWESS smoothing for Node.js
npm install fastlowess

One LOWESS to Rule Them All
The fastest, most robust, and most feature-complete language-agnostic LOWESS (Locally Weighted Scatterplot Smoothing) implementation for Rust, Python, R, Julia, JavaScript, C++, and WebAssembly.
> [!IMPORTANT]
>
> The lowess-project contains a complete ecosystem for LOWESS smoothing:
>
> - lowess - Core single-threaded Rust implementation with no_std support
> - fastLowess - Parallel CPU and GPU-accelerated Rust wrapper with ndarray integration
> - R bindings - extendr-based R binding
> - Python bindings - PyO3-based Python binding
> - Julia bindings - Native Julia binding with C FFI
> - JavaScript bindings - Node.js binding
> - WebAssembly bindings - WASM binding
> - C++ bindings - Native C++ binding with CMake integration
---
> [!NOTE]
>
> Currently available for R, Python, Rust, Julia, Node.js, WebAssembly, and C++. See INSTALLATION.md for detailed installation instructions.
> [!NOTE]
>
> ### 📚 View the full documentation
---
| Feature | LOESS (This Crate) | LOWESS |
|-----------------------|-----------------------------------|--------------------------------|
| Polynomial Degree | Linear, Quadratic, Cubic, Quartic | Linear (Degree 1) |
| Dimensions | Multivariate (n-D support) | Univariate (1-D only) |
| Flexibility | High (Distance metrics) | Standard |
| Complexity | Higher (Matrix inversion) | Lower (Weighted average/slope) |
> [!TIP]
> Note: For a LOESS implementation, use loess-project.
---
The lowess project beats the competition in terms of speed, whether in single-threaded or multi-threaded parallel execution. It is on average 200-327x faster than Python's statsmodels.lowess and 2-3x faster than R's lowess.
For more details on the performance comparison, see the BENCHMARKS file.
This implementation is more robust than R's lowess and Python's statsmodels due to two key design choices:
MAD-Based Scale Estimation:
For robustness weight calculations, this crate uses Median Absolute Deviation (MAD) for scale estimation:
``text`
s = median(|r_i - median(r)|)
In contrast, statsmodels and R's lowess uses the median of absolute residuals (MAR):
`text`
s = median(|r_i|)
- MAD is a breakdown-point-optimal estimator—it remains valid even when up to 50% of data are outliers.
- The median-centering step removes asymmetric bias from residual distributions.
- MAD provides consistent outlier detection regardless of whether residuals are centered around zero.
Boundary Padding:
This crate applies a range of different boundary policies at dataset edges:
- Extend: Repeats edge values to maintain local neighborhood size.
- Reflect: Mirrors data symmetrically around boundaries.
- Zero: Pads with zeros (useful for signal processing).
- NoBoundary: Original Cleveland behavior
statsmodels and R's lowess do not apply boundary padding, which can lead to:
- Biased estimates near boundaries due to asymmetric local neighborhoods.
- Increased variance at the edges of the smoothed curve.
A variety of features, supporting a range of use cases:
| Feature | This package | statsmodels | R (stats) |
|----------------------|:-------------:|:------------:|:------------:|
| Kernel | 7 options | only Tricube | only Tricube |
| Robustness Weighting | 3 options | only Huber | only Huber |
| Scale Estimation | 2 options | only MAR | only MAR |
| Boundary Padding | 4 options | no padding | no padding |
| Zero Weight Fallback | 3 options | no | no |
| Auto Convergence | yes | no | no |
| Online Mode | yes | no | no |
| Streaming Mode | yes | no | no |
| Confidence Intervals | yes | no | no |
| Prediction Intervals | yes | no | no |
| Cross-Validation | 2 options | no | no |
| Parallel Execution | yes | no | no |
| GPU Acceleration | yes* | no | no |
| no-std Support | yes | no | no |
\* GPU acceleration is currently in beta and may not be available on all platforms.
All implementations are numerical twins of R's lowess:
| Aspect | Status | Details |
|-----------------|----------------|-----------------------------------------------|
| Accuracy | ✅ EXACT MATCH | Max diff < 1e-12 across all scenarios |
| Consistency | ✅ PERFECT | Multiple scenarios pass with strict tolerance |
| Robustness | ✅ VERIFIED | Robust smoothing matches R exactly |
R:
`r
Lowess(
fraction = 0.5,
iterations = 3L,
delta = 0.01,
weight_function = "tricube",
robustness_method = "bisquare",
zero_weight_fallback = "use_local_mean",
boundary_policy = "extend",
confidence_intervals = 0.95,
prediction_intervals = 0.95,
return_diagnostics = TRUE,
return_residuals = TRUE,
return_robustness_weights = TRUE,
cv_fractions = c(0.3, 0.5, 0.7),
cv_method = "kfold",
cv_k = 5L,
auto_converge = 1e-4,
parallel = TRUE
)$fit(x, y)
Python:
`python
from fastlowess import Lowessmodel = Lowess(
fraction=0.5,
iterations=3,
delta=0.01,
weight_function="tricube",
robustness_method="bisquare",
zero_weight_fallback="use_local_mean",
boundary_policy="extend",
confidence_intervals=0.95,
prediction_intervals=0.95,
return_diagnostics=True,
return_residuals=True,
return_robustness_weights=True,
cv_fractions=[0.3, 0.5, 0.7],
cv_method="kfold",
cv_k=5,
auto_converge=1e-4,
parallel=True
)
result = model.fit(x, y)
Result structure:
result.x,
result.y,
result.standard_errors,
result.confidence_lower,
result.confidence_upper,
result.prediction_lower,
result.prediction_upper,
result.residuals,
result.robustness_weights,
result.diagnostics,
result.iterations_used,
result.fraction_used,
result.cv_scores
`Rust:
`rust
Lowess::new()
.fraction(0.5)
.iterations(3)
.delta(0.01)
.weight_function(Tricube)
.robustness_method(Bisquare)
.zero_weight_fallback(UseLocalMean)
.boundary_policy(Extend)
.confidence_intervals(0.95)
.prediction_intervals(0.95)
.return_diagnostics()
.return_residuals()
.return_robustness_weights()
.cross_validate(KFold(5, &[0.3, 0.5, 0.7]).seed(123))
.auto_converge(1e-4)
.adapter(Batch)
.parallel(true) // fastLowess only
.backend(CPU) // fastLowess only: CPU or GPU
.build()?;let result = model.fit(x, y);
// Result structure:
pub struct LowessResult {
pub x: Vec, // Sorted x values
pub y: Vec, // Smoothed y values
pub standard_errors: Option>,
pub confidence_lower: Option>,
pub confidence_upper: Option>,
pub prediction_lower: Option>,
pub prediction_upper: Option>,
pub residuals: Option>,
pub robustness_weights: Option>,
pub diagnostics: Option>,
pub iterations_used: Option,
pub fraction_used: T,
pub cv_scores: Option>,
}
`Julia:
`julia
Lowess(;
fraction=0.5,
iterations=3,
delta=NaN, # NaN for auto
weight_function="tricube",
robustness_method="bisquare",
zero_weight_fallback="use_local_mean",
boundary_policy="extend",
confidence_intervals=NaN,
prediction_intervals=NaN,
return_diagnostics=true,
return_residuals=true,
return_robustness_weights=true,
cv_fractions=Float64[], # e.g. [0.3, 0.5]
cv_method="kfold",
cv_k=5,
auto_converge=NaN,
parallel=true
)Result structure:
result.x,
result.y,
result.standard_errors,
result.confidence_lower,
result.confidence_upper,
result.prediction_lower,
result.prediction_upper,
result.residuals,
result.robustness_weights,
result.diagnostics,
result.iterations_used,
result.fraction_used,
result.cv_scores
`Node.js:
`javascript
new Lowess({
fraction: 0.5,
iterations: 3,
delta: 0.01,
weightFunction: "tricube",
robustnessMethod: "bisquare",
zeroWeightFallback: "use_local_mean",
boundaryPolicy: "extend",
confidenceIntervals: 0.95,
predictionIntervals: 0.95,
returnDiagnostics: true,
returnResiduals: true,
returnRobustnessWeights: true,
cvFractions: [0.3, 0.5, 0.7],
cvMethod: "kfold",
cvK: 5,
autoConverge: 1e-4,
parallel: true
}).fit(x, y)// Result structure:
result.x,
result.y,
result.standardErrors,
result.confidenceLower,
result.confidenceUpper,
result.predictionLower,
result.predictionUpper,
result.residuals,
result.robustnessWeights,
result.diagnostics,
result.iterationsUsed,
result.fractionUsed,
result.cvScores
`WebAssembly:
`javascript
smooth(x, y, {
fraction: 0.5,
iterations: 3,
delta: 0.01,
weightFunction: "tricube",
robustnessMethod: "bisquare",
zeroWeightFallback: "use_local_mean",
boundaryPolicy: "extend",
confidenceIntervals: 0.95,
predictionIntervals: 0.95,
returnDiagnostics: true,
returnResiduals: true,
returnRobustnessWeights: true,
cvFractions: [0.3, 0.5, 0.7],
cvMethod: "kfold",
cvK: 5,
autoConverge: 1e-4,
parallel: true
})// Result structure:
result.x,
result.y,
result.standardErrors,
result.confidenceLower,
result.confidenceUpper,
result.predictionLower,
result.predictionUpper,
result.residuals,
result.robustnessWeights,
result.diagnostics,
result.iterationsUsed,
result.fractionUsed,
result.cvScores
`C++:
`cpp
fastlowess::LowessOptions options;
options.fraction = 0.5;
options.iterations = 3;
options.delta = 0.01;
options.weight_function = "tricube";
options.robustness_method = "bisquare";
options.zero_weight_fallback = "use_local_mean";
options.boundary_policy = "extend";
options.confidence_intervals = 0.95;
options.prediction_intervals = 0.95;
options.return_diagnostics = true;
options.return_residuals = true;
options.return_robustness_weights = true;
options.cv_fractions = {0.3, 0.5, 0.7};
options.cv_method = "kfold";
options.cv_k = 5;
options.auto_converge = 1e-4;
options.parallel = true;fastlowess::Lowess model(options);
auto result = model.fit(x, y);
// Result structure:
result.x_vector(),
result.y_vector(),
result.standard_errors(),
result.confidence_lower(),
result.confidence_upper(),
result.prediction_lower(),
result.prediction_upper(),
result.residuals(),
result.robustness_weights(),
result.diagnostics(),
result.iterations_used(),
result.fraction_used(),
result.cv_scores()
`---
Contributing
Contributions are welcome! Please see the CONTRIBUTING.md file for more information.
License
Licensed under MIT or Apache-2.0.
Citation
If you use this software in your research, please cite it using the CITATION.cff file or the BibTeX entry below:
`bibtex
@software{lowess_project,
author = {Valizadeh, Amir},
title = {LOWESS Project: High-Performance Locally Weighted Scatterplot Smoothing},
year = {2026},
url = {https://github.com/thisisamirv/lowess-project},
license = {MIT OR Apache-2.0}
}
``