Genkit AI framework
npm install genkitGenkit is a framework for building AI-powered applications. It provides open source libraries for Node.js and Go, along with tools to help you debug and iterate quickly.
Install the following Genkit dependencies to use Genkit in your project:
- genkit provides Genkit core capabilities.
- @genkit-ai/googleai provides access to the Google AI Gemini models. Check out other plugins: https://www.npmjs.com/search?q=keywords:genkit-plugin
``posix-terminal`
npm install genkit @genkit-ai/googleai
Get started with Genkit in just a few lines of simple code.
`ts
// import the Genkit and Google AI plugin libraries
import { genkit } from 'genkit';
import { googleAI } from '@genkit-ai/google-genai';
const ai = genkit({ plugins: [googleAI()] });
const { text } = await ai.generate({
model: googleAI.model('gemini-2.5-flash'),
prompt: 'Why is Genkit awesome?'
});
`
Genkit also provides middleware to add common functionality to your AI requests. For example, you can use the retry middleware to automatically retry failed requests:
`ts
import { retry } from 'genkit/model/middleware';
const { text } = await ai.generate({
model: googleAI.model('gemini-2.5-flash'),
prompt: 'Why is Genkit awesome?',
use: [
retry({
maxRetries: 3,
initialDelayMs: 1000,
backoffFactor: 2,
}),
],
});
`
Genkit also lets you build strongly typed, accessible from the client, fully observable AI flows:
`ts
import { googleAI } from '@genkit-ai/google-genai';
import { genkit, z } from 'genkit';
// Initialize Genkit with the Google AI plugin
const ai = genkit({
plugins: [googleAI()],
model: googleAI.model('gemini-2.5-flash', {
temperature: 0.8
}),
});
// Define input schema
const RecipeInputSchema = z.object({
ingredient: z.string().describe('Main ingredient or cuisine type'),
dietaryRestrictions: z.string().optional().describe('Any dietary restrictions'),
});
// Define output schema
const RecipeSchema = z.object({
title: z.string(),
description: z.string(),
prepTime: z.string(),
cookTime: z.string(),
servings: z.number(),
ingredients: z.array(z.string()),
instructions: z.array(z.string()),
tips: z.array(z.string()).optional(),
});
// Define a recipe generator flow
export const recipeGeneratorFlow = ai.defineFlow(
{
name: 'recipeGeneratorFlow',
inputSchema: RecipeInputSchema,
outputSchema: RecipeSchema,
},
async (input, { sendChunk }) => {
// Create a prompt based on the input
const prompt = Create a recipe with the following requirements:
Main ingredient: ${input.ingredient}
Dietary restrictions: ${input.dietaryRestrictions || 'none'};
// Generate structured recipe data using the same schema
const { output } = await ai.generate({
prompt,
output: { schema: RecipeSchema },
onChunk: sendChunk // stream output
});
if (!output) throw new Error('Failed to generate recipe');
return output;
}
);
// Run the flow locally
async function main() {
const recipe = await recipeGeneratorFlow({
ingredient: 'avocado',
dietaryRestrictions: 'vegetarian'
});
console.log(recipe);
}
main().catch(console.error);
`
You can easily serve flows as an API:
`ts
import { startFlowServer } from '@genkit-ai/express'; // npm i @genkit-ai/express
startFlowServer({
flows: [recipeGeneratorFlow],
});
`
And access the flow from the client:
`ts
import { runFlow } from 'genkit/beta/client';
const { stream } = streamFlow({
url: 'http://localhost:3500/recipeGeneratorFlow',
input: {
ingredient: 'avocado',
dietaryRestrictions: 'vegetarian'
},
});
for await (const chunk of stream) {
console.log(chunk);
}
``
For more details see: https://genkit.dev/docs/deploy-node
But you can also deploy to Firebase or Cloud Run, etc.
Now that you’re set up to make model requests with Genkit, learn how to use more
Genkit capabilities to build your AI-powered apps and workflows. To get started
with additional Genkit capabilities, see the following guides:
- Developer tools: Learn how to set up and use
Genkit’s CLI and developer UI to help you locally test and debug your app.
- Generating content: Learn how to use Genkit’s unified
generation API to generate text and structured data from any supported
model.
- Creating flows: Learn how to use special Genkit
functions, called flows, that provide end-to-end observability for workflows
and rich debugging from Genkit tooling.
- Managing prompts: Learn how Genkit helps you manage
your prompts and configuration together as code.
Learn more at https://genkit.dev
License: Apache 2.0