Integrate a system of ODEs using the Second Order Runge-Kutta (Midpoint) method
npm install integrate-adaptive-simpson   
> Compute a definite integral of one variable using Simpson's Rule with adaptive quadrature
This module computes the definite integral

``bash`
$ npm install integrate-adaptive-simpson
To compute the definite integral

`javascript
var integrate = require('integrate-adaptive-simpson');
function f (x) {
return Math.cos(1 / x) / x);
}
intiegrate(f, 0.01, 1, 1e-8);
// => -0.3425527480294604
`
To integrate a vector function, you may import the vectorized version. To compute a contour integral of, say,
about
, that is,

`javascript
var integrate = require('integrate-adaptive-simpson/vector');
integrate(function (f, theta) {
// z = unit circle:
var c = Math.cos(theta);
var s = Math.sin(theta);
// dz:
var dzr = -s;
var dzi = c;
// 1 / z at this point on the unit circle:
var fr = c / (c c + s s);
var fi = -s / (c c + s s);
// Multiply f(z) * dz:
f[0] = fr dzr - fi dzi;
f[1] = fr dzi + fi dzr;
}, 0, Math.PI * 2);
// => [ 0, 6.283185307179586 ]
`
#### require('integrate-adaptive-simpson')( f, a, b [, tol, maxdepth]] )
Compute the definite integral of scalar function f from a to b.
Arguments:
- f: The function to be integrated. A function of one variable that returns a value.a
- : The lower limit of integration, b
.
- : The upper limit of integration, tol
.
- : The relative error required for an interval to be subdivided, based on Richardson extraplation. Default tolerance is 1e-8. Be careful—the total accumulated error may be significantly less and result in more function evaluations than necessary.maxdepth
- : The maximum recursion depth. Default depth is 20. If reached, computation continues and a warning is output to the console.
Returns: The computed value of the definite integral.
#### require('integrate-adaptive-simpson/vector')( f, a, b [, tol, maxdepth]] )
Compute the definite integral of vector function f from a to b.
Arguments:
- f: The function to be integrated. The first argument is an array of length n into which the output must be written. The second argument is the scalar value of the independent variable.a
- : The lower limit of integration, b
.
- : The upper limit of integration, tol
.
- : The relative error required for an interval to be subdivided, based on Richardson extraplation. Default tolerance is 1e-8.maxdepth
- : The maximum recursion depth. Default depth is 20. If reached, computation continues and a warning is output to the console.
Returns: An Array` representing The computed value of the definite integral.
(c) 2015 Scijs Authors. MIT License.