A Jupyter - Chart.js bridge enabling interactive data visualization with Python.
npm install ipychart


The power of Chart.js with Python
Installation
------------
You can install ipychart from your terminal using pip or conda:
``bashusing pip
$ pip install ipychart
Documentation
------------
- Introduction
- Getting Started
- Usage
- Charts
- Configuration
- Scales
- Pandas Interface
- Advanced Features
- Developers
Usage
------------
Create charts with Python in a very similar way to creating charts using Chart.js. The charts created are fully configurable, interactive and modular and are displayed directly in the output of the the cells of your jupyter notebook environment:

You can also create charts directly from a pandas dataframe. See the Pandas Interface section of the documentation for more details.
Development Installation
------------
For a development installation:
$ git clone https://github.com/nicohlr/ipychart.git
$ cd ipychart
$ conda install jupyterlab -c conda-forge
$ cd ipychart/src
$ jlpm install
$ cd ..
$ pip install -e .
$ jupyter nbextension install --py --symlink --sys-prefix ipychart
$ jupyter nbextension enable --py --sys-prefix ipychart
References
------------
- Chart.js
- Ipywidgets
- Ipywidgets cookiecutter template
- Chart.js Datalabels
- Chart.js Zoom
- Vuepress
- GitHub Pages
License
------------
Ipychart is available under the MIT license.