Get descriptions of images from OpenAI, Azure OpenAI and Anthropic Claude models. Supports both URLs and local files with batch processing capabilities.
npm install jstextfromimage!npm Version
!TypeScript
!License
!Downloads
!Node Version
A powerful TypeScript/JavaScript library for obtaining detailed descriptions of images using various AI models including OpenAI's GPT-4 Vision, Azure OpenAI, and Anthropic Claude. Supports image URLs with batch processing capabilities.
- 🤖 Multiple AI Providers: Support for OpenAI, Azure OpenAI, and Anthropic Claude
- 🌐 URL Support: Process images from URLs
- 📦 Batch Processing: Process multiple images concurrently
- 📝 TypeScript First: Built with TypeScript for excellent type safety
- 🔄 Async/Await: Modern Promise-based API
- 🔑 Flexible Auth: Multiple authentication methods including environment variables
- 🛡️ Error Handling: Comprehensive error handling
``bash`
npm install jstextfromimage
You can use the services either with environment variables or direct initialization.
`typescript
import { openai, claude, azureOpenai } from 'jstextfromimage';
// Services will automatically use environment variables
const description = await openai.getDescription('https://example.com/image.jpg');
`
`typescript
import { OpenAIService, ClaudeService, AzureOpenAIService } from 'jstextfromimage';
// OpenAI custom instance
const customOpenAI = new OpenAIService('your-openai-api-key');
// Claude custom instance
const customClaude = new ClaudeService('your-claude-api-key');
// Azure OpenAI custom instance
const customAzure = new AzureOpenAIService({
apiKey: 'your-azure-api-key',
endpoint: 'your-azure-endpoint',
deploymentName: 'your-deployment-name'
});
`
`typescript
import { openai } from 'jstextfromimage';
// Single image analysis
const description = await openai.getDescription('https://example.com/image.jpg', {
prompt: "Describe the main elements of this image",
maxTokens: 500,
model: 'gpt-4o'
});
// Batch processing
const imageUrls = [
'https://example.com/image1.jpg',
'https://example.com/image2.jpg',
'https://example.com/image3.jpg'
];
const results = await openai.getDescriptionBatch(imageUrls, {
prompt: "Analyze this image in detail",
maxTokens: 300,
concurrency: 2,
model: 'gpt-4o'
});
// Process results
results.forEach(result => {
if (result.error) {
console.error(Error processing ${result.imageUrl}: ${result.error});Description for ${result.imageUrl}: ${result.description}
} else {
console.log();`
}
});
`typescript
import { claude } from 'jstextfromimage';
// Single image analysis
const description = await claude.getDescription('https://example.com/artwork.jpg', {
prompt: "Analyze this artwork, including style and composition",
maxTokens: 1000,
model: 'claude-3-sonnet-20240229'
});
// Batch processing
const artworkUrls = [
'https://example.com/artwork1.jpg',
'https://example.com/artwork2.jpg'
];
const analyses = await claude.getDescriptionBatch(artworkUrls, {
prompt: "Provide a detailed art analysis",
maxTokens: 800,
concurrency: 2,
model: 'claude-3-sonnet-20240229'
});
`
`typescript
import { azureOpenai } from 'jstextfromimage';
// Single image analysis
const description = await azureOpenai.getDescription('https://example.com/scene.jpg', {
prompt: "Describe this scene in detail",
maxTokens: 400,
systemPrompt: "You are an expert in visual analysis."
});
// Batch processing
const sceneUrls = [
'https://example.com/scene1.jpg',
'https://example.com/scene2.jpg'
];
const analyses = await azureOpenai.getDescriptionBatch(sceneUrls, {
prompt: "Analyze the composition and mood",
maxTokens: 500,
concurrency: 3,
systemPrompt: "You are an expert cinematographer."
});
`
`typescript
// OpenAI defaults
{
model: 'gpt-4o',
maxTokens: 300,
prompt: "What's in this image?",
concurrency: 3 // for batch processing
}
// Claude defaults
{
model: 'claude-3-sonnet-20240229',
maxTokens: 300,
prompt: "What's in this image?",
concurrency: 3
}
// Azure OpenAI defaults
{
maxTokens: 300,
prompt: "What's in this image?",
systemPrompt: "You are a helpful assistant.",
concurrency: 3
}
`
`typescript
import { openai } from 'jstextfromimage';
// Single local file
const description = await openai.getDescription('/path/to/local/image.jpg', {
prompt: "Describe this image",
maxTokens: 300,
model: 'gpt-4o'
});
// Mix of local files and URLs in batch processing
const images = [
'/path/to/local/image1.jpg',
'https://example.com/image2.jpg',
'/path/to/local/image3.png'
];
const results = await openai.getDescriptionBatch(images, {
prompt: "Analyze each image",
maxTokens: 300,
concurrency: 2
});
`
`envOpenAI
OPENAI_API_KEY=your-openai-api-key
$3
`typescript
// Base options for all services
interface BaseOptions {
prompt?: string;
maxTokens?: number;
concurrency?: number; // For batch processing
}// OpenAI specific options
interface OpenAIOptions extends BaseOptions {
model?: string;
}
// Claude specific options
interface ClaudeOptions extends BaseOptions {
model?: string;
}
// Azure OpenAI specific options
interface AzureOpenAIOptions extends BaseOptions {
systemPrompt?: string;
}
// Azure OpenAI configuration
interface AzureOpenAIConfig {
apiKey?: string;
endpoint?: string;
deploymentName?: string;
apiVersion?: string;
}
// Batch processing results
interface BatchResult {
imageUrl: string;
description: string;
error?: string;
}
`🔍 Error Handling Examples
`typescript
// Single image with error handling
try {
const description = await openai.getDescription(imageUrl, {
maxTokens: 300
});
console.log(description);
} catch (error) {
console.error('Failed to process image:', error);
}// Batch processing with retry
async function processWithRetry(imageUrls: string[], maxRetries = 3) {
const results = await openai.getDescriptionBatch(imageUrls, {
maxTokens: 300,
concurrency: 2
});
// Handle failed items with retry
const failedItems = results.filter(r => r.error);
let retryCount = 0;
while (failedItems.length > 0 && retryCount < maxRetries) {
const retryUrls = failedItems.map(item => item.imageUrl);
const retryResults = await openai.getDescriptionBatch(retryUrls, {
maxTokens: 300,
concurrency: 1 // Lower concurrency for retries
});
// Update results with successful retries
retryResults.forEach(result => {
if (!result.error) {
const index = results.findIndex(r => r.imageUrl === result.imageUrl);
if (index !== -1) {
results[index] = result;
}
}
});
retryCount++;
}
return results;
}
`🛠️ Development
`bash
Install dependencies
npm installRun tests
npm testBuild the project
npm run buildRun linting
npm run lint
`🤝 Contributing
1. Fork the repository
2. Create your feature branch (
git checkout -b feature/amazing-feature)
3. Commit your changes (git commit -am 'feat: add amazing feature')
4. Push to the branch (git push origin feature/amazing-feature`)This project is licensed under the MIT License - see the LICENSE file for details.
For support, please open an issue on GitHub.