Testing Mask detection model in TensorFlow.js
npm install maskdetection![]()
, ,
js
// Note: you do not need to import @tensorflow/tfjs here.
import * as mask from 'maskdetection';
const img = document.getElementById('img');
// Load the model.
const model = await mask.load(PATH_TO_JSON_MODEL);
// Classify the image.
const predictions = await model.detect(img);
console.log('Predictions: ');
console.log(predictions);
`
API
#### Loading the model
maskdetection is the module name. When using ES6 imports, mask is the module.
`ts
mask.load(PATH_TO_JSON_MODEL);
`
Args:
PATH_TO_JSON_MODEL string that specifies json file as input of the model. This file can be an url or a locally stored file.
Returns a model object.
#### Detecting workers
You can detect workers wearing masks and those who are not with the model without needing to create a Tensor.
model.detect takes an input image element and returns an array of bounding boxes with class name and confidence level.
This method exists on the model that is loaded from mask.load.
`ts
model.detect(
img: tf.Tensor3D | ImageData | HTMLImageElement |
HTMLCanvasElement | HTMLVideoElement
)
`
Args:
img: A Tensor or an image element to make a detection on.
Returns an array of classes and probabilities that looks like:
`js
[{
bbox: [x, y, width, height],
class: "person",
score: 0.8380282521247864
}, {
bbox: [x, y, width, height],
class: "person with mask",
score: 0.74644153267145157
}]
``