Find zeros of a function using the Newton-Raphson method
npm install newton-raphson-method> Find zeros of a function using Newton's Method
[![Build Status][travis-image]][travis-url] [![npm version][npm-image]][npm-url] [![Dependency Status][daviddm-image]][daviddm-url] [![js-semistandard-style][semistandard-image]][semistandard-url]
The Newton-Raphson method uses the tangent of a curve to iteratively approximate a zero of a function, f(x). This yields the update:

Consider the zero of (x + 2) * (x - 1) at x = 1:
``javascript
var nr = require('newton-raphson-method');
function f (x) { return (x - 1) * (x + 2); }
function fp (x) { return (x - 1) + (x + 2); }
// Using the derivative:
nr(f, fp, 2)
// => 1.0000000000000000 (6 iterations)
// Using a numerical derivative:
nr(f, 2)
// => 1.0000000000000000 (6 iterations)
`
`bash`
$ npm install newton-raphson-method
#### require('newton-raphson-method')(f[, fp], x0[, options])
Given a real-valued function of one variable, iteratively improves and returns a guess of a zero.
Parameters:
- f: The numerical function of one variable of which to compute the zero.fp
- (optional): The first derivative of f. If not provided, is computed numerically using a fourth order central difference with step size h.x0
- : A number representing the intial guess of the zero.options
- (optional): An object permitting the following options:tolerance
- (default: 1e-7): The tolerance by which convergence is measured. Convergence is met if |x[n+1] - x[n]| <= tolerance * |x[n+1]|.epsilon
- (default: 2.220446049250313e-16 (double-precision epsilon)): A threshold against which the first derivative is tested. Algorithm fails if |y'| < epsilon * |y|.maxIterations
- (default: 20): Maximum permitted iterations.h
- (default: 1e-4): Step size for numerical differentiation.verbose
- (default: false): Output additional information about guesses, convergence, and failure.
Returns: If convergence is achieved, returns an approximation of the zero. If the algorithm fails, returns false.
- modified-newton-raphson: A simple modification of Newton-Raphson that may exhibit improved convergence.
- newton-raphson`: A similar and lovely implementation that differs (only?) in requiring a first derivative.
© 2016 Scijs Authors. MIT License.
Ricky Reusser
[npm-image]: https://badge.fury.io/js/newton-raphson-method.svg
[npm-url]: https://npmjs.org/package/newton-raphson-method
[travis-image]: https://travis-ci.org/scijs/newton-raphson-method.svg?branch=master
[travis-url]: https://travis-ci.org/scijs/newton-raphson-method
[daviddm-image]: https://david-dm.org/scijs/newton-raphson-method.svg?theme=shields.io
[daviddm-url]: https://david-dm.org/scijs/newton-raphson-method
[semistandard-image]: https://img.shields.io/badge/code%20style-semistandard-brightgreen.svg?style=flat-square
[semistandard-url]: https://github.com/Flet/semistandard