Official TypeScript/JavaScript SDK for PDF Vector API - Parse PDF/Word/Image/Excel documents to clean, structured markdown format and search academic publications across multiple databases
The official TypeScript/JavaScript SDK for the PDF Vector API: Convert PDF and Word documents to clean, structured markdown format with optional AI enhancement, ask questions about documents using AI, extract structured data from documents with JSON Schema, search across multiple academic databases with a unified API, and fetch specific publications by DOI, PubMed ID, ArXiv ID, and more.
``bash`
npm install pdfvectoror
yarn add pdfvectoror
pnpm add pdfvectoror
bun add pdfvector
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
// Parse from document URL or data
const parseResult = await client.parse({
url: "https://example.com/document.pdf",
useLLM: "auto",
});
console.log(parseResult.markdown); // Return clean markdown
console.log(
Pages: ${parseResult.pageCount}, Credits: ${parseResult.creditCount},
);
// Ask questions about documents
const askResult = await client.ask({
url: "https://example.com/research-paper.pdf",
prompt: "What are the key findings and conclusions?",
});
console.log(askResult.markdown); // AI-generated answer in markdown format
console.log(Pages: ${askResult.pageCount}, Credits: ${askResult.creditCount});
// Extract structured data using JSON Schema
const extractResult = await client.extract({
url: "https://example.com/research-paper.pdf",
prompt: "Extract the research information",
schema: {
type: "object",
properties: {
title: { type: "string" },
authors: { type: "array", items: { type: "string" } },
abstract: { type: "string" },
findings: { type: "array", items: { type: "string" } },
},
required: ["title", "abstract"],
additionalProperties: false,
},
});
console.log(extractResult.data); // Structured JSON output matching the schema
`
Get your API key from the PDF Vector dashboard. The SDK requires a valid API key for all operations.
`typescript`
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.parse({
url: "https://arxiv.org/pdf/2301.00001.pdf",
useLLM: "auto",
});
console.log(result.markdown);
`
`typescript
import { readFile } from "fs/promises";
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.parse({
data: await readFile("document.pdf"),
contentType: "application/pdf",
useLLM: "auto",
});
console.log(result.markdown);
`
Ask questions about PDF and Word documents using AI and get natural language answers.
#### Ask from URL
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.ask({
url: "https://arxiv.org/pdf/2301.00001.pdf",
prompt: "What methodology was used in this research?",
});
console.log(result.markdown); // AI-generated answer in markdown format
console.log(Document has ${result.pageCount} pages);Cost: ${result.creditCount} credits
console.log();`
#### Ask from file data
`typescript
import { readFile } from "fs/promises";
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.ask({
data: await readFile("research-paper.pdf"),
contentType: "application/pdf",
prompt: "Summarize the main findings and their implications",
});
console.log(result.markdown);
`
Extract structured data from PDF and Word documents using AI and JSON Schema.
#### Extract from URL
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.extract({
url: "https://example.com/invoice.pdf",
prompt: "Extract invoice details",
schema: {
type: "object",
properties: {
invoiceNumber: { type: "string" },
date: { type: "string" },
totalAmount: { type: "number" },
items: {
type: "array",
items: {
type: "object",
properties: {
description: { type: "string" },
quantity: { type: "number" },
price: { type: "number" },
},
},
},
},
required: ["invoiceNumber", "date", "totalAmount", "items"],
additionalProperties: false,
},
});
console.log(result.data); // Structured data matching the schema
console.log(Cost: ${result.creditCount} credits);`
#### Extract from file data
`typescript
import { readFile } from "fs/promises";
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.extract({
data: await readFile("research-paper.pdf"),
contentType: "application/pdf",
prompt: "Extract research paper metadata",
schema: {
type: "object",
properties: {
title: { type: "string" },
authors: { type: "array", items: { type: "string" } },
abstract: { type: "string" },
keywords: { type: "array", items: { type: "string" } },
publicationDate: { type: "string" },
},
required: ["title", "authors", "abstract"],
additionalProperties: false,
},
});
console.log(result.data);
`
The SDK provides specialized methods for processing invoices with optimized parsing and extraction capabilities.
#### Parse Invoice
Parse invoices and convert them to clean markdown format optimized for invoice structure.
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.invoiceParse({
url: "https://example.com/invoice.pdf",
});
console.log(result.markdown); // Structured invoice content in markdown
console.log(Cost: ${result.creditCount} credits (${result.pageCount} pages));`
Returns:
`typescript`
{
markdown: string; // Parsed invoice in markdown format
pageCount: number; // Number of pages processed
creditCount: number; // Credits consumed (4 per page)
}
#### Ask Questions About Invoices
Ask natural language questions about invoice content and get AI-powered answers.
`typescript
const result = await client.invoiceAsk({
url: "https://example.com/invoice.pdf",
prompt: "What is the total amount and due date for this invoice?",
});
console.log(result.markdown); // AI-generated answer about the invoice
console.log(Cost: ${result.creditCount} credits (${result.pageCount} pages));`
Returns:
`typescript`
{
markdown: string; // AI-generated answer in markdown format
pageCount: number; // Number of pages in the invoice
creditCount: number; // Credits consumed (6 per page)
}
#### Extract Structured Invoice Data
Extract structured data from invoices using JSON Schema for consistent, reliable results.
`typescript
const result = await client.invoiceExtract({
url: "https://example.com/invoice.pdf",
prompt: "Extract all invoice details including vendor, items, and totals",
schema: {
type: "object",
properties: {
invoiceNumber: { type: "string" },
invoiceDate: { type: "string" },
dueDate: { type: "string" },
vendor: {
type: "object",
properties: {
name: { type: "string" },
address: { type: "string" },
taxId: { type: "string" },
},
additionalProperties: false,
},
items: {
type: "array",
items: {
type: "object",
properties: {
description: { type: "string" },
quantity: { type: "number" },
unitPrice: { type: "number" },
totalPrice: { type: "number" },
},
additionalProperties: false,
},
},
subtotal: { type: "number" },
tax: { type: "number" },
total: { type: "number" },
},
required: ["invoiceNumber", "total", "items"],
additionalProperties: false,
},
});
console.log(result.data); // Structured invoice data matching the schema
console.log(Cost: ${result.creditCount} credits (${result.pageCount} pages));`
Returns:
`typescript`
{
data: object; // Structured invoice data matching your schema
pageCount: number; // Number of pages in the invoice
creditCount: number; // Credits consumed (6 per page)
}
#### Invoice Methods - Cost Summary
- invoiceParse(): 4 credits per page
- invoiceAsk(): 6 credits per page
- invoiceExtract(): 6 credits per page
The SDK provides specialized methods for processing ID documents (passports, driver's licenses, ID cards) with optimized parsing and extraction capabilities.
#### Parse ID Document
Parse ID documents and convert them to clean markdown format optimized for identity document structure.
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const result = await client.idParse({
url: "https://example.com/passport.pdf",
});
console.log(result.markdown); // Structured ID document content in markdown
console.log(Cost: ${result.creditCount} credits (${result.pageCount} pages));`
Returns:
`typescript`
{
markdown: string; // Parsed ID document in markdown format
pageCount: number; // Number of pages processed
creditCount: number; // Credits consumed (4 per page)
}
#### Ask Questions About ID Documents
Ask natural language questions about ID document content and get AI-powered answers.
`typescript
const result = await client.idAsk({
url: "https://example.com/passport.pdf",
prompt: "What is the full name and date of birth on this document?",
});
console.log(result.markdown); // AI-generated answer about the ID document
console.log(Cost: ${result.creditCount} credits (${result.pageCount} pages));`
Returns:
`typescript`
{
markdown: string; // AI-generated answer in markdown format
pageCount: number; // Number of pages in the ID document
creditCount: number; // Credits consumed (6 per page)
}
#### Extract Structured ID Document Data
Extract structured data from ID documents using JSON Schema for consistent, reliable results.
`typescript
const result = await client.idExtract({
url: "https://example.com/passport.pdf",
prompt: "Extract passport details from this document",
schema: {
type: "object",
properties: {
fullName: { type: "string" },
dateOfBirth: { type: "string" },
documentNumber: { type: "string" },
nationality: { type: "string" },
expirationDate: { type: "string" },
issuingCountry: { type: "string" },
gender: { type: "string" },
},
required: ["fullName", "documentNumber"],
additionalProperties: false,
},
});
console.log(result.data); // Structured ID document data matching the schema
console.log(Cost: ${result.creditCount} credits (${result.pageCount} pages));`
Returns:
`typescript`
{
data: object; // Structured ID document data matching your schema
pageCount: number; // Number of pages in the ID document
creditCount: number; // Credits consumed (6 per page)
}
#### ID Document Methods - Cost Summary
- idParse(): 4 credits per page
- idAsk(): 6 credits per page
- idExtract(): 6 credits per page
`typescript
import { PDFVector } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const searchResponse = await client.academicSearch({
query: "quantum computing",
providers: ["semantic-scholar", "arxiv", "pubmed"], // Search across multiple academic databases
limit: 20,
yearFrom: 2021,
yearTo: 2024,
});
searchResponse.results.forEach((publication) => {
console.log(Title: ${publication.title});Authors: ${publication.authors?.map((a) => a.name).join(", ")}
console.log();Year: ${publication.year}
console.log();Abstract: ${publication.abstract}
console.log();`
console.log("---");
});
`typescript
const searchResponse = await client.academicSearch({
query: "CRISPR gene editing",
providers: ["semantic-scholar"],
fields: ["title", "authors", "year", "providerData"], //providerData is Provider-Specific data field
});
searchResponse.results.forEach((pub) => {
if (pub.provider === "semantic-scholar" && pub.providerData) {
const data = pub.providerData;
console.log(Influential Citations: ${data.influentialCitationCount});Fields of Study: ${data.fieldsOfStudy?.join(", ")}
console.log();`
}
});
`typescript
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const response = await client.academicFetch({
ids: [
"10.1038/nature12373", // DOI
"12345678", // PubMed ID
"2301.00001", // ArXiv ID
"arXiv:2507.16298v1", // ArXiv with prefix
"ED123456", // ERIC ID
"0f40b1f08821e22e859c6050916cec3667778613", // Semantic Scholar ID
],
fields: ["title", "authors", "year", "abstract", "doi"], // Optional: specify fields
});
// Handle successful results
response.results.forEach((pub) => {
console.log(Title: ${pub.title});Provider: ${pub.detectedProvider}
console.log();Requested as: ${pub.id}
console.log();
});
// Handle errors for IDs that couldn't be fetched
response.errors?.forEach((error) => {
console.log(Failed to fetch ${error.id}: ${error.error});`
});
`typescript
import { PDFVector, PDFVectorError } from "pdfvector";
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
try {
const result = await client.parse({
url: "https://example.com/document.pdf",
});
console.log(result.markdown);
} catch (error) {
if (error instanceof PDFVectorError) {
console.error(API Error: ${error.message});Status: ${error.status}
console.error();Code: ${error.code}
console.error();`
} else {
console.error("Unexpected Error:", error);
}
}
The client class for interacting with the PDF Vector API.
`typescript`
new PDFVector(config: PDFVectorConfig)
Parameters:
- config.apiKey (string): Your PDF Vector API keyconfig.baseUrl
- (string, optional): Custom base URL (defaults to https://www.pdfvector.com)
#### parse(request)
Parse a PDF or Word document and convert it to markdown.
Parameters:
For URL parsing:
`typescript`
{
url: string; // Direct URL to PDF/Word document
useLLM?: 'auto' | 'always' | 'never'; // Default: 'auto'
}
For data parsing:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // Direct data of PDF/Word document
contentType: string; // MIME type (e.g., 'application/pdf')
useLLM?: 'auto' | 'always' | 'never'; // Default: 'auto'
}
Returns:
`typescript`
{
markdown: string; // Extracted content as markdown
pageCount: number; // Number of pages processed
creditCount: number; // Credits consumed (1-2 per page)
usedLLM: boolean; // Whether AI enhancement was used
}
#### LLM Usage Options
- auto (default): Automatically decide if AI enhancement is needed (1-2 credits per page)
- never: Standard parsing without AI (1 credit per page)
- always: Force AI enhancement (2 credits per page)
Note: Free plans are limited to useLLM: 'never'. Upgrade to a paid plan for AI enhancement.
#### Supported File Types
##### PDF Documents
- application/pdfapplication/x-pdf
- application/acrobat
- application/vnd.pdf
- text/pdf
- text/x-pdf
-
##### Word Documents
- application/msword (.doc)application/vnd.openxmlformats-officedocument.wordprocessingml.document
- (.docx)
#### Usage Limits
- Processing timeout: 3 minutes per document
- File size: No explicit limit, but larger files usually have more pages and consume more credits
#### Cost
- Credits: Consumed per page (1-2 credits depending on LLM usage)
#### Common error codes:
- url-not-found: Document URL not accessibleunsupported-content-type
- : File type not supportedtimeout-error
- : Processing timeout (3 minutes max)payment-required
- : Usage limit reached
#### ask(request)
Ask questions about PDF or Word documents and get natural language answers.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to PDF/Word document
prompt: string; // The question you want to ask about the document
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // Document data
contentType: string; // MIME type (e.g., 'application/pdf')
prompt: string; // The question you want to ask about the document
}
Returns:
`typescript`
{
markdown: string; // AI-generated answer in markdown format
pageCount: number; // Number of pages in the document
creditCount: number; // Credits consumed (3 per page)
}
#### Document Q&A Features
- Natural language responses: AI provides answers in clear, readable markdown format
- Contextual understanding: AI analyzes the entire document to provide relevant answers
- Multiple formats: Supports both PDF and Word documents
- Page-based pricing: 3 credits per page in the document
#### Cost
- Credits: 3 credits per page in the document
#### Common error codes:
- url-not-found: Document URL not accessibleunsupported-content-type
- : File type not supportedpage-count-not-found
- : Unable to detect page counttimeout-error
- : Processing timeoutpayment-required
- : Usage limit reached
#### extract(request)
Extract structured data from PDF or Word documents using AI and JSON Schema.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to PDF/Word document
prompt: string; // Instructions for extracting structured data
schema: object; // JSON Schema defining the structure of expected output
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // Document data
contentType: string; // MIME type (e.g., 'application/pdf')
prompt: string; // Instructions for extracting structured data
schema: object; // JSON Schema defining the structure of expected output
}
Returns:
`typescript`
{
data: object; // Structured data matching the provided schema
pageCount: number; // Number of pages in the document
creditCount: number; // Credits consumed (3 per page)
}
#### JSON Schema Requirements
- Must be a valid JSON Schema following the specification
- Must include additionalProperties: false at the object level
- Can define complex nested structures
- Supports all standard JSON Schema features
#### Extract Features
- Schema validation: Ensures extracted data matches your exact requirements
- Complex structures: Supports nested objects, arrays, and various data types
- Reliable extraction: AI follows your schema strictly for consistent results
- Multiple formats: Supports both PDF and Word documents
#### Cost
- Credits: 3 credits per page in the document
#### Common error codes:
- url-not-found: Document URL not accessibleunsupported-content-type
- : File type not supportedinvalid-schema
- : JSON Schema is invalid or missing additionalPropertiestimeout-error
- : Processing timeoutpayment-required
- : Usage limit reached
#### invoiceParse(request)
Parse an invoice and convert it to markdown format optimized for invoice structure.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to invoice PDF/Word document
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // Invoice data
contentType: string; // MIME type (e.g., 'application/pdf')
}
Returns:
`typescript`
{
markdown: string; // Parsed invoice in markdown format
pageCount: number; // Number of pages in the invoice
creditCount: number; // Credits consumed (4 per page)
}
#### Cost
- Credits: 4 credits per page
#### invoiceAsk(request)
Ask questions about invoices and get AI-powered answers.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to invoice PDF/Word document
prompt: string; // The question you want to ask about the invoice
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // Invoice data
contentType: string; // MIME type (e.g., 'application/pdf')
prompt: string; // The question you want to ask about the invoice
}
Returns:
`typescript`
{
markdown: string; // AI-generated answer in markdown format
pageCount: number; // Number of pages in the invoice
creditCount: number; // Credits consumed (6 per page)
}
#### Cost
- Credits: 6 credits per page
#### invoiceExtract(request)
Extract structured data from invoices using AI and JSON Schema.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to invoice PDF/Word document
prompt: string; // Instructions for extracting structured invoice data
schema: object; // JSON Schema defining the structure of expected output
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // Invoice data
contentType: string; // MIME type (e.g., 'application/pdf')
prompt: string; // Instructions for extracting structured invoice data
schema: object; // JSON Schema defining the structure of expected output
}
Returns:
`typescript`
{
data: object; // Structured invoice data matching the provided schema
pageCount: number; // Number of pages in the invoice
creditCount: number; // Credits consumed (6 per page)
}
#### Cost
- Credits: 6 credits per page
#### idParse(request)
Parse an ID document (passport, driver's license, ID card) and convert it to markdown format.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to ID document (PDF or image)
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // ID document data
contentType: string; // MIME type (e.g., 'application/pdf', 'image/jpeg')
}
Returns:
`typescript`
{
markdown: string; // Parsed ID document in markdown format
pageCount: number; // Number of pages in the ID document
creditCount: number; // Credits consumed (4 per page)
}
#### Cost
- Credits: 4 credits per page
#### idAsk(request)
Ask questions about ID documents and get AI-powered answers.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to ID document (PDF or image)
prompt: string; // The question you want to ask about the ID document
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // ID document data
contentType: string; // MIME type (e.g., 'application/pdf', 'image/jpeg')
prompt: string; // The question you want to ask about the ID document
}
Returns:
`typescript`
{
markdown: string; // AI-generated answer in markdown format
pageCount: number; // Number of pages in the ID document
creditCount: number; // Credits consumed (6 per page)
}
#### Cost
- Credits: 6 credits per page
#### idExtract(request)
Extract structured data from ID documents using AI and JSON Schema.
Parameters:
For URL input:
`typescript`
{
url: string; // Direct URL to ID document (PDF or image)
prompt: string; // Instructions for extracting structured ID data
schema: object; // JSON Schema defining the structure of expected output
}
For data input:
`typescript`
{
data: string | Buffer | Uint8Array | ArrayBuffer | Blob | ReadableStream; // ID document data
contentType: string; // MIME type (e.g., 'application/pdf', 'image/jpeg')
prompt: string; // Instructions for extracting structured ID data
schema: object; // JSON Schema defining the structure of expected output
}
Returns:
`typescript`
{
data: object; // Structured ID document data matching the provided schema
pageCount: number; // Number of pages in the ID document
creditCount: number; // Credits consumed (6 per page)
}
#### Cost
- Credits: 6 credits per page
Search academic publications across multiple databases.
Parameters:
`typescript`
{
query: string; // Search query
providers?: AcademicSearchProvider[]; // Databases to search (default: ["semantic-scholar"])
offset?: number; // Pagination offset (default: 0)
limit?: number; // Results per page, 1-100 (default: 20)
yearFrom?: number; // Filter by publication year (from) (min: 1900)
yearTo?: number; // Filter by publication year (to) (max: 2050)
fields?: AcademicSearchPublicationField[]; // Fields to include in response
}
Supported Providers:
- "semantic-scholar" - Semantic Scholar"arxiv"
- - ArXiv"pubmed"
- - PubMed"google-scholar"
- - Google Scholar"eric"
- - ERIC"europe-pmc"
- - Europe PMC"openalex"
- - OpenAlex
Available Fields:
- Basic fields: "id", "doi", "title", "url", "providerURL", "authors", "date", "year", "totalCitations", "totalReferences", "abstract", "pdfURL", "provider""providerData"
- Extended field: - Provider-specific metadata
Returns:
`typescript`
{
estimatedTotalResults: number; // Total results available
results: AcademicSearchPublication[]; // Array of publications
errors?: AcademicSearchProviderError[]; // Any provider errors
}
#### Cost
- Credits: 2 credits per search.
Fetch specific academic publications by their IDs with automatic provider detection.
Parameters:
`typescript`
{
ids: string[]; // Array of publication IDs to fetch
fields?: AcademicSearchPublicationField[]; // Fields to include in response
}
Supported ID Types:
- DOI: e.g., "10.1038/nature12373""12345678"
- PubMed ID: e.g., (numeric ID)"2301.00001"
- ArXiv ID: e.g., or "arXiv:2301.00001" or "math.GT/0309136""0f40b1f08821e22e859c6050916cec3667778613"
- Semantic Scholar ID: e.g., "ED123456"
- ERIC ID: e.g., "PMC3004345"
- Europe PMC ID: e.g., or "PPR123456""W2741809807"
- OpenAlex ID: e.g., or "https://openalex.org/W2741809807"
Returns:
`typescript`
{
results: AcademicFetchResult[]; // Successfully fetched publications
errors?: AcademicFetchError[]; // Errors for IDs that couldn't be fetched
}
Each result includes:
`typescript`
{
id: string; // The ID that was used to fetch
detectedProvider: string; // Provider that was used
// ... all publication fields (title, authors, abstract, etc.)
}
#### Cost
- Credits: 2 credit per fetch.
The SDK is written in TypeScript and includes full type definitions:
`typescript
import type {
// Core classes
PDFVector,
PDFVectorConfig,
PDFVectorError,
// Parse API types
ParseURLRequest,
ParseDataRequest,
ParseResponse,
// Ask API types
AskURLRequest,
AskDataRequest,
AskResponse,
// Extract API types
ExtractURLRequest,
ExtractDataRequest,
ExtractResponse,
// Invoice API types
ParseInvoiceResponse,
AskInvoiceResponse,
ExtractInvoiceResponse,
// ID Document API types
ParseIdResponse,
AskIdResponse,
ExtractIdResponse,
// Academic Search API types
SearchRequest,
AcademicSearchResponse,
AcademicSearchPublication,
AcademicSearchProvider,
AcademicSearchAuthor,
AcademicSearchPublicationField,
// Academic Fetch API types
FetchRequest,
AcademicFetchResponse,
AcademicFetchResult,
AcademicFetchError,
// Provider-specific data types
AcademicSearchSemanticScholarData,
AcademicSearchGoogleScholarData,
AcademicSearchPubMedData,
AcademicSearchArxivData,
AcademicSearchEricData,
} from "pdfvector";
// Constants
import {
AcademicSearchProviderValues, // Array of valid providers
AcademicSearchPublicationFieldValues, // Array of valid fields
} from "pdfvector";
`
- Node.js version: Node.js 20+
- ESM: Supports ES modules (CommonJS is not supported)
- Dependencies: Uses standard fetch API
`typescript
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
const documents = [
"https://example.com/doc1.pdf",
"https://example.com/doc2.pdf",
];
const results = await Promise.all(
documents.map((url) => client.parse({ url, useLLM: "auto" })),
);
results.forEach((result, index) => {
console.log(Document ${index + 1}:);Pages: ${result.pageCount}
console.log();Credits: ${result.creditCount}
console.log();`
});
`typescript
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
// Ask multiple questions about the same document
const questions = [
"What is the main hypothesis?",
"What methodology was used?",
"What are the key findings?",
"What are the limitations mentioned?",
];
const documentUrl = "https://example.com/research-paper.pdf";
const answers = await Promise.all(
questions.map((prompt) => client.ask({ url: documentUrl, prompt })),
);
answers.forEach((result, index) => {
console.log(\nQuestion: ${questions[index]});Answer: ${result.markdown}
console.log();
});
// Extract structured data using the extract endpoint
const structuredData = await client.extract({
url: documentUrl,
prompt: "Extract comprehensive research information from this paper",
schema: {
type: "object",
properties: {
title: { type: "string" },
authors: {
type: "array",
items: {
type: "object",
properties: {
name: { type: "string" },
affiliation: { type: "string" },
},
additionalProperties: false,
},
},
abstract: { type: "string" },
methodology: {
type: "object",
properties: {
approach: { type: "string" },
dataCollection: { type: "string" },
sampleSize: { type: "number" },
},
additionalProperties: false,
},
findings: {
type: "array",
items: { type: "string" },
},
limitations: {
type: "array",
items: { type: "string" },
},
conclusions: { type: "string" },
},
required: ["title", "abstract", "findings"],
additionalProperties: false,
},
});
console.log(
"Structured Research Data:",
JSON.stringify(structuredData.data, null, 2),
);
// Note: Each operation consumes credits based on page count
const totalCredits =
answers.reduce((sum, result) => sum + result.creditCount, 0) +
structuredData.creditCount;
console.log(\nTotal credits used: ${totalCredits});`
`typescript
const client = new PDFVector({ apiKey: "pdfvector_api_key_here" });
let offset = 0;
const limit = 50;
const allResults = [];
// Fetch first page
let response = await client.academicSearch({
query: "climate change",
providers: ["semantic-scholar", "arxiv"],
offset,
limit,
});
allResults.push(...response.results);
// Fetch more pages as needed
while (
allResults.length < response.estimatedTotalResults &&
allResults.length < 200
) {
offset += limit;
response = await client.academicSearch({
query: "climate change",
providers: ["semantic-scholar", "arxiv"],
offset,
limit,
});
allResults.push(...response.results);
}
console.log(Fetched ${allResults.length} publications);`
`typescript``
// For development or custom deployments
const client = new PDFVector({
apiKey: "pdfvector_api_key_here",
baseUrl: "https://pdfvector.acme.com",
});
- API Reference: pdfvector.com/v1/api/scalar
- Dashboard: pdfvector.com/dashboard
This SDK is licensed under the MIT License.