Node.js wrapper of scikit-learn
npm install scikit-learnNode.js wrapper of scikit-learn
npm install scikit-learn
var scikit = require('scikit-learn')
``js
var inspect = require('inspect-stream');
var arrayify = require('arrayify-merge.s');
var slice = require('slice-flow.s');
var scikit = require('scikit-learn');
var features = scikit.dataset('load_digits.data'); //stream of features
var labels = scikit.dataset('load_digits.target'); //stream of labels
// arrayify is transform stream that turns two input streams
// into one stream by wraping packets of inputs in array.
// So trainingSet outputs arrays [
var clf = scikit.svm('SVC', {
gamma: 0.001,
C: 100
});
trainingSet
.pipe(slice([0, -1])) //passes all packets except last one
.pipe(clf)
.on('error', function (err) {
console.log(err);
})
.on('end', function () {
// now we have trained model
var predict = clf.predict();
var features = scikit.dataset('load_digits.data');
features.pipe(slice(-1)) //passes only last packet
.pipe(predict)
.pipe(inspect());
});
`
* name String Name of method of sklearn.datasets on python sideObject
concatenated by dot with name of dataset's subset
Ex: 'load_digits.target'
* options Options of method
Returns readable stream of dataset
All fit streams are transform streams that acts like writable.
So you must listen on end event instead of finish
to be sure that training finished
Accepts flow of arrays like [features, label]
where 'features' is array of features and label is... label
Also fit stream have event 'model' that emits with trained model.
Model is Buffer containing pickled object
Fit stream have method predict that returns Predict stream
#### scikit.svm(name, options)
* name String Name of method of sklearn.svm Object` Options for estimator
* options
Predict stream is transform stream that accepts flow of arrays of features
and outputs predictions