TypeScript Model Context Protocol (MCP) server boilerplate providing search API tools/resources. Includes CLI support and extensible structure for connecting AI systems (LLMs) to external data sources (Google, Bing, etc.) via SearchAPI.site
npm install searchapi-mcp-serverThis project provides a Model Context Protocol (MCP) server that connects AI assistants to external data sources (Google, Bing, etc.) via SearchAPI.site.
- Website
- API Docs
- Swagger UI Config
- Create Search API key here
- GitHub
- [x] Support "stdio" transport
- [ ] Support "sse" transport
``bashGoogle search via CLI
npm run dev:cli -- search-google --query "your search query" --api-key "your-api-key"
$3
For local configuration:
`json
{
"mcpServers": {
"searchapi": {
"command": "node",
"args": ["/path/to/searchapi-mcp-server/dist/index.js"],
"transportType": "stdio"
}
}
}
`For remote configuration:
`json
{
"mcpServers": {
"searchapi": {
"type": "sse",
"url": "https://mcp.searchapi.site/sse"
}
}
}
`---
Source Code Overview
What is MCP?
Model Context Protocol (MCP) is an open standard that allows AI systems to securely and contextually connect with external tools and data sources.
This boilerplate implements the MCP specification with a clean, layered architecture that can be extended to build custom MCP servers for any API or data source.
Why Use This Boilerplate?
- Production-Ready Architecture: Follows the same pattern used in published MCP servers, with clear separation between CLI, tools, controllers, and services.
- Type Safety: Built with TypeScript for improved developer experience, code quality, and maintainability.
- Working Example: Includes a fully implemented IP lookup tool demonstrating the complete pattern from CLI to API integration.
- Testing Framework: Comes with testing infrastructure for both unit and CLI integration tests, including coverage reporting.
- Development Tooling: Includes ESLint, Prettier, TypeScript, and other quality tools preconfigured for MCP server development.
---
Getting Started
Prerequisites
- Node.js (>=18.x): Download
- Git: For version control
---
Step 1: Clone and Install
`bash
Clone the repository
git clone https://github.com/mrgoonie/searchapi-mcp-server.git
cd searchapi-mcp-serverInstall dependencies
npm install
`---
Step 2: Run Development Server
Start the server in development mode:
`bash
npm run dev:server
`This starts the MCP server with hot-reloading and enables the MCP Inspector at http://localhost:5173.
āļø Proxy server listening on port 6277
š MCP Inspector is up and running at http://127.0.0.1:6274
---
Step 3: Test the Example Tool
Run the example IP lookup tool from the CLI:
`bash
Using CLI in development mode
npm run dev:cli -- search-google --query "your search query" --api-key "your-api-key"Or with a specific IP
npm run dev:cli -- search-google --query "your search query" --api-key "your-api-key" --limit 10 --offset 0 --sort "date:d" --from_date "2023-01-01" --to_date "2023-12-31"
`---
Architecture
This boilerplate follows a clean, layered architecture pattern that separates concerns and promotes maintainability.
Project Structure
`
src/
āāā cli/ # Command-line interfaces
āāā controllers/ # Business logic
āāā resources/ # MCP resources: expose data and content from your servers to LLMs
āāā services/ # External API interactions
āāā tools/ # MCP tool definitions
āāā types/ # Type definitions
āāā utils/ # Shared utilities
āāā index.ts # Entry point
`Layers and Responsibilities
$3
- Purpose: Define command-line interfaces that parse arguments and call controllers
- Naming: Files should be named
- Testing: CLI integration tests in $3
- Purpose: Define MCP tools with schemas and descriptions for AI assistants
- Naming: Files should be named
with types in
- Pattern: Each tool should use zod for argument validation$3
- Purpose: Implement business logic, handle errors, and format responses
- Naming: Files should be named
- Pattern: Should return standardized ControllerResponse objects$3
- Purpose: Interact with external APIs or data sources
- Naming: Files should be named
- Pattern: Pure API interactions with minimal logic$3
- Purpose: Provide shared functionality across the application
- Key Utils:
-
logger.util.ts: Structured logging
- error.util.ts: Error handling and standardization
- formatter.util.ts: Markdown formatting helpers---
Development Guide
Development Scripts
`bash
Start server in development mode (hot-reload & inspector)
npm run dev:serverRun CLI in development mode
npm run dev:cli -- [command] [args]Build the project
npm run buildStart server in production mode
npm run start:serverRun CLI in production mode
npm run start:cli -- [command] [args]
`Testing
`bash
Run all tests
npm testRun specific tests
npm test -- src/path/to/test.tsGenerate test coverage report
npm run test:coverage
`Code Quality
`bash
Lint code
npm run lintFormat code with Prettier
npm run formatCheck types
npm run typecheck
`---
Building Custom Tools
Follow these steps to add your own tools to the server:
1. Define Service Layer
Create a new service in
src/services/ to interact with your external API:`typescript
// src/services/example.service.ts
import { Logger } from '../utils/logger.util.js';const logger = Logger.forContext('services/example.service.ts');
export async function getData(param: string): Promise {
logger.debug('Getting data', { param });
// API interaction code here
return { result: 'example data' };
}
`2. Create Controller
Add a controller in
src/controllers/ to handle business logic:`typescript
// src/controllers/example.controller.ts
import { Logger } from '../utils/logger.util.js';
import * as exampleService from '../services/example.service.js';
import { formatMarkdown } from '../utils/formatter.util.js';
import { handleControllerError } from '../utils/error-handler.util.js';
import { ControllerResponse } from '../types/common.types.js';const logger = Logger.forContext('controllers/example.controller.ts');
export interface GetDataOptions {
param?: string;
}
export async function getData(
options: GetDataOptions = {},
): Promise {
try {
logger.debug('Getting data with options', options);
const data = await exampleService.getData(options.param || 'default');
const content = formatMarkdown(data);
return { content };
} catch (error) {
throw handleControllerError(error, {
entityType: 'ExampleData',
operation: 'getData',
source: 'controllers/example.controller.ts',
});
}
}
`3. Implement MCP Tool
Create a tool definition in
src/tools/:`typescript
// src/tools/example.tool.ts
import { McpServer } from '@modelcontextprotocol/sdk/server/mcp.js';
import { z } from 'zod';
import { Logger } from '../utils/logger.util.js';
import { formatErrorForMcpTool } from '../utils/error.util.js';
import * as exampleController from '../controllers/example.controller.js';const logger = Logger.forContext('tools/example.tool.ts');
const GetDataArgs = z.object({
param: z.string().optional().describe('Optional parameter'),
});
type GetDataArgsType = z.infer;
async function handleGetData(args: GetDataArgsType) {
try {
logger.debug('Tool get_data called', args);
const result = await exampleController.getData({
param: args.param,
});
return {
content: [{ type: 'text' as const, text: result.content }],
};
} catch (error) {
logger.error('Tool get_data failed', error);
return formatErrorForMcpTool(error);
}
}
export function register(server: McpServer) {
server.tool(
'get_data',
Gets data from the example API, optionally using \param\.,
GetDataArgs.shape,
handleGetData,
);
}
`4. Add CLI Support
Create a CLI command in
src/cli/:`typescript
// src/cli/example.cli.ts
import { program } from 'commander';
import { Logger } from '../utils/logger.util.js';
import * as exampleController from '../controllers/example.controller.js';
import { handleCliError } from '../utils/error-handler.util.js';const logger = Logger.forContext('cli/example.cli.ts');
program
.command('get-data')
.description('Get example data')
.option('--param ', 'Optional parameter')
.action(async (options) => {
try {
logger.debug('CLI get-data called', options);
const result = await exampleController.getData({
param: options.param,
});
console.log(result.content);
} catch (error) {
handleCliError(error);
}
});
`5. Register Components
Update the entry points to register your new components:
`typescript
// In src/cli/index.ts
import '../cli/example.cli.js';// In src/index.ts (for the tool)
import exampleTool from './tools/example.tool.js';
// Then in registerTools function:
exampleTool.register(server);
`---
Debugging Tools
MCP Inspector
Access the visual MCP Inspector to test your tools and view request/response details:
1. Run
npm run dev:server
2. Open http://localhost:5173 in your browser
3. Test your tools and view logs directly in the UIServer Logs
Enable debug logs for development:
`bash
Set environment variable
DEBUG=true npm run dev:serverOr configure in ~/.mcp/configs.json
`---
Publishing Your MCP Server
When ready to publish your custom MCP server:
1. Update package.json with your details
2. Update README.md with your tool documentation
3. Build the project:
npm run build
4. Test the production build: npm run start:server
5. Publish to npm: npm publish---
License
`json
{
"searchapi-mcp-server": {
"environments": {
"DEBUG": "true",
"ANY_OTHER_CONFIG": "value"
}
}
}
`Note: For backward compatibility, the server will also recognize configurations under the full package name (
@aashari/boilerplate-mcp-server) or the unscoped package name (boilerplate-mcp-server) if the boilerplate key is not found. However, using the short boilerplate` key is recommended for new configurations.