a vector similarity search engine in WASM
npm install voy-search![voy: a vector similarity search engine in WebAssembly][demo]

- Tiny: 75KB gzipped, 69KB brotli.
- Fast: Create the best search experience for the users. Voy uses [k-d tree][k-d-tree] to index and provide fast search
- Tree Shakable: Optimize bundle size and enable asynchronous capabilities for modern Web API, such as Web Workers.
- Resumable: Generate portable embeddings index anywhere, anytime.
- Worldwide: Designed to deploy and run on CDN edge servers.
> 🚜 Work in Progress
>
> Voy is under active development. As a result, the API is not stable. Please be aware that there might be breaking changes before the upcoming 1.0 release.
>
> A sneak peek of what we are working on:
>
> - [ ] Built-in text transformation in WebAssembly: As of now, voy relies on JavaScript libraries like [transformers.js][transformers.js] to generate text embeddings. See Usage for more detail.
> - [x] Index update: Currently it's required to re-build the index when a resource update occurs.
> - [x] TypeScript support: Due to the limitation of WASM tooling, complex data types are not auto-generated.
``bashwith npm
npm i voy-search
APIs
$3
The Voy class encapsulates an index and exposes all the public methods Voy has to offer.
`ts
class Voy {
/**
* By instantiating with a resource, Voy will construct the index. If the resource is
* absent, it will construct an empty index. Calling Voy.index() later on will override
* the empty index.
*
* @param {Resource | undefined} resource
*/
constructor(resource?: Resource);
/**
* Index given resource. Voy.index() is designed for the use case where a Voy instance
* is instantiated without a resource. It will override the existing index. If you'd like
* to keep the existing index, you can use Voy.add() to add your resource to the index.
*
* @param {Resource} resource
*/
index(resource: Resource): void;
/**
* Search top k results with given query embedding.
*
* @param {Float32Array} query: Query Embedding
* @param {number} k: Number of items in the search result
* @returns {SearchResult}
*/
search(query: Float32Array, k: number): SearchResult;
/**
* Add given resource to the index.
*
* @param {Resource} resource
*/
add(resource: Resource): void;
/**
* Remove given resource from the index.
*
* @param {Resource} resource
*/
remove(resource: Resource): void;
/**
* Remove all resources from the index.
*/
clear(): void;
}interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
interface SearchResult {
neighbors: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
}>;
}
`$3
Besides the Voy class, Voy also exports all the instance methods as individual functions.
####
index(resource: Resource): SerializedIndexIt indexes the given resource and returns a serialized index.
Parameters
`ts
interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
`Return
`ts
type SerializedIndex = string;
`####
search(index: SerializedIndex, query: Query, k: NumberOfResult): SearchResultIt deserializes the given index and search for the
k nearest neighbors of the query.Parameter
`ts
type SerializedIndex = string;type Query = Float32Array; // embeddings of the search query
type NumberOfResult = number; // K top results to return
`Return
`ts
interface SearchResult {
neighbors: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
}>;
}
`####
add(index: SerializedIndex, resource: Resource): SerializedIndexIt adds resources to the index and returns an updated serialized index.
Parameter
`ts
type SerializedIndex = string;interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
`Return
`ts
type SerializedIndex = string;
`####
remove(index: SerializedIndex, resource: Resource): SerializedIndexIt removes resources from the index and returns an updated serialized index.
Parameter
`ts
type SerializedIndex = string;interface Resource {
embeddings: Array<{
id: string; // id of the resource
title: string; // title of the resource
url: string; // url to the resource
embeddings: number[]; // embeddings of the resource
}>;
}
`Return
`ts
type SerializedIndex = string;
`####
clear(index: SerializedIndex): SerializedIndexIt removes all items from the index and returns an empty serialized index.
Parameter
`ts
type SerializedIndex = string;
`Return
`ts
type SerializedIndex = string;
`Usage
$3
As of now, voy relies on libraries like [
transformers.js][transformers.js] and [web-ai][web-ai] to generate embeddings for text:`js
import { TextModel } from "@visheratin/web-ai";const { Voy } = await import("voy-search");
const phrases = [
"That is a very happy Person",
"That is a Happy Dog",
"Today is a sunny day",
];
const query = "That is a happy person";
// Create text embeddings
const model = await (await TextModel.create("gtr-t5-quant")).model;
const processed = await Promise.all(phrases.map((q) => model.process(q)));
// Index embeddings with voy
const data = processed.map(({ result }, i) => ({
id: String(i),
title: phrases[i],
url:
/path/${i},
embeddings: result,
}));
const resource = { embeddings: data };
const index = new Voy(resource);// Perform similarity search for a query embeddings
const q = await model.process(query);
const result = index.search(q.result, 1);
// Display search result
result.neighbors.forEach((result) =>
console.log(
✨ voy similarity search result: "${result.title}")
);
`$3
`js
import { TextModel } from "@visheratin/web-ai";const { Voy } = await import("voy-search");
const phrases = [
"That is a very happy Person",
"That is a Happy Dog",
"Today is a sunny day",
"Sun flowers are blooming",
];
const model = await (await TextModel.create("gtr-t5-quant")).model;
const processed = await Promise.all(phrases.map((q) => model.process(q)));
const data = processed.map(({ result }, i) => ({
id: String(i),
title: phrases[i],
url:
/path/${i},
embeddings: result,
}));
const resourceA = { embeddings: data.slice(0, 2) };
const resourceB = { embeddings: data.slice(2) };const indexA = new Voy(resourceA);
const indexB = new Voy(resourceB);
``Licensed under either of
- Apache License, Version 2.0, (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (LICENSE-MIT or http://opensource.org/licenses/MIT)
at your option.
Unless you explicitly state otherwise, any contribution intentionally
submitted for inclusion in the work by you, as defined in the Apache-2.0
license, shall be dual licensed as above, without any additional terms or
conditions.
[demo]: ./voy.gif "voy demo"
[web-ai]: https://github.com/visheratin/web-ai
[k-d-tree]: https://en.wikipedia.org/wiki/K-d_tree
[transformers.js]: https://github.com/xenova/transformers.js