MCP server for Zig โ AI-powered code analysis, validation, and documentation with fine-tuned LLM
npm install zignetMCP Server for Zig โ Intelligent code analysis, validation, and documentation powered by a fine-tuned LLM
ZigNet integrates with Claude (and other MCP-compatible LLMs) to provide real-time Zig code analysis without leaving your chat interface.
---
๐ analyze_zig โ Syntax and type checking with official Zig compiler
Analyze Zig code for syntax errors, type mismatches, and semantic issues using zig ast-check.
Example usage:
``typescript`
User: "Analyze this Zig code"
Claude: [calls analyze_zig tool]
Response: "โ
Syntax: Valid | Type Check: PASS | Warnings: 0"
Capabilities:
- Lexical analysis (tokenization)
- Syntax parsing (AST generation)
- Type checking and validation
- Semantic error detection
- Line/column error reporting
โจ compile_zig โ Format and validate Zig code
Validate and format Zig code using zig fmt, generating clean, idiomatic output.
Example:
`zig
// Input (messy)
fn add(a:i32,b:i32)i32{return a+b;}
// Output (formatted)
fn add(a: i32, b: i32) i32 {
return a + b;
}
`
Capabilities:
- Code formatting (2-space indentation)
- Syntax validation
- Best practices enforcement
- Preserves semantics
๐ get_zig_docs โ AI-powered documentation lookup (coming soon)
Retrieve Zig documentation and explanations for language features using a fine-tuned LLM.
Example:
`typescript`
Query: "comptime"
Response: "comptime enables compile-time evaluation in Zig..."
Powered by:
- Fine-tuned Qwen2.5-Coder-7B model
- 13,756 examples from Zig 0.13-0.15
- Specialized on advanced Zig idioms (comptime, generics, error handling)
๐ง suggest_fix โ Intelligent error fix suggestions (coming soon)
Get intelligent code fix suggestions for Zig errors using AI-powered analysis.
Example:
`zig
// Error: "Type mismatch: cannot assign string to i32"
var x: i32 = "hello";
// Suggestions:
// Option 1: var x: []const u8 = "hello"; // If you meant string
// Option 2: var x: i32 = 42; // If you meant integer
`
Features:
- Context-aware suggestions
- Multiple fix options
- Explanation of the issue
- Zig idiom recommendations
---
ZigNet is an MCP server โ configure it once in your MCP client, then use it naturally in conversation.
๐ฅ๏ธ Claude Desktop
Configuration file location:
- macOS: ~/Library/Application Support/Claude/claude_desktop_config.json~/.config/Claude/claude_desktop_config.json
- Linux: %APPDATA%\Claude\claude_desktop_config.json
- Windows:
Add this:
`json`
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
Then restart Claude Desktop and start using:
`
You: "Analyze this Zig code for errors"
[paste code]
Claude: [uses analyze_zig tool]
"Found 1 type error: variable 'x' expects i32 but got []const u8"
`
๐ง VS Code (with GitHub Copilot)
Method 1: VS Code Marketplace (coming soon)
1. Open VS Code Extensions (Ctrl+Shift+X / Cmd+Shift+X)@mcp zignet
2. Search for
3. Click Install
4. Restart VS Code
Method 2: Manual configuration (available now)
1. Install GitHub Copilot extension (if not already installed)
2. Open Copilot settings
3. Add to MCP servers config:
`json`
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
Then restart VS Code and Copilot will have access to ZigNet tools.
1. First use: npx downloads and caches ZigNet automaticallyanalyze_zig
2. Zig compiler: Downloads on-demand (supports Zig 0.13, 0.14, 0.15)
3. Tools available: , compile_zig (+ get_zig_docs, suggest_fix coming soon)npx -y zignet
4. Zero maintenance: Updates automatically via
---
If you have multiple GPUs (e.g., AMD + NVIDIA), you can control which GPU ZigNet uses via environment variables.
Windows (PowerShell):
`powershell`
$env:ZIGNET_GPU_DEVICE="0"
npx -y zignet
macOS/Linux:
`bash`
export ZIGNET_GPU_DEVICE="0"
npx -y zignet
VS Code MCP Configuration with GPU selection:
`json`
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"],
"env": {
"ZIGNET_GPU_DEVICE": "0"
}
}
}
}
Claude Desktop configuration with GPU selection:
macOS/Linux (~/.config/Claude/claude_desktop_config.json):`json`
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"],
"env": {
"ZIGNET_GPU_DEVICE": "0"
}
}
}
}
Windows (%APPDATA%\Claude\claude_desktop_config.json):`json`
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"],
"env": {
"ZIGNET_GPU_DEVICE": "0"
}
}
}
}
GPU Device Values:
- "0" - Use first GPU only (e.g., RTX 4090)"1"
- - Use second GPU only"0,1"
- - Use both GPUs
- Not set - Use all available GPUs (default)
Identify your GPUs:
`bashNVIDIA GPUs
nvidia-smi
$3
All configuration options can be set via environment variables:
| Variable | Default | Description |
|----------|---------|-------------|
|
ZIGNET_GPU_DEVICE | auto | GPU device selection (CUDA_VISIBLE_DEVICES) |
| ZIGNET_GPU_LAYERS | 35 | Number of model layers on GPU (0=CPU only) |
| ZIGNET_MODEL_PATH | ~/.zignet/models/... | Custom model path |
| ZIGNET_MODEL_AUTO_DOWNLOAD | true | Auto-download model from HuggingFace |
| ZIGNET_CONTEXT_SIZE | 4096 | LLM context window size |
| ZIGNET_TEMPERATURE | 0.7 | LLM creativity (0.0-1.0) |
| ZIGNET_TOP_P | 0.9 | LLM sampling parameter |
| ZIG_SUPPORTED | 0.13.0,0.14.0,0.15.2 | Supported Zig versions |
| ZIG_DEFAULT | 0.15.2 | Default Zig version |See .env.example for detailed examples.
---
๐๏ธ Architecture
`
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Claude / MCP Client โ
โโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ MCP Protocol (JSON-RPC)
โโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ ZigNet MCP Server (TypeScript) โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Tool Handlers โ โ
โ โ - analyze_zig โ โ
โ โ - compile_zig โ โ
โ โ - get_zig_docs โ โ
โ โ - suggest_fix โ โ
โ โโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โผ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Zig Compiler Integration โ โ
โ โ - zig ast-check (syntax + type validation) โ โ
โ โ - zig fmt (official formatter) โ โ
โ โ - Auto-detects system Zig installation โ โ
โ โ - Falls back to downloading if needed โ โ
โ โโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โผ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ Fine-tuned LLM (Qwen2.5-Coder-7B) โ โ
โ โ - Documentation lookup โ โ
โ โ - Intelligent suggestions โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
`Why this architecture?
- Official Zig compiler (100% accurate, always up-to-date) instead of custom parser
- System integration (uses existing Zig installation if available)
- LLM-powered suggestions (get_zig_docs, suggest_fix) for intelligence
- No external API calls (local inference via node-llama-cpp)
- Fast (< 100ms for validation, < 2s for LLM suggestions)
Note: When Zig releases a new version (e.g., 0.16.0), ZigNet will need to re-train the LLM model on updated documentation and examples.
---
๐งช Development Status
| Component | Status | Notes |
| -------------------- | ---------- | ----------------------------------- |
| Zig Compiler Wrapper | โ
Complete | ast-check + fmt integration |
| System Zig Detection | โ
Complete | Auto-detects installed Zig versions |
| Multi-version Cache | โ
Complete | Downloads Zig 0.13-0.15 on demand |
| MCP Server | โ
Complete | All 4 tools fully implemented |
| LLM Fine-tuning | โ
Complete | Trained on 13,756 Zig examples |
| get_zig_docs | โ
Complete | LLM-powered documentation lookup |
| suggest_fix | โ
Complete | LLM-powered intelligent suggestions |
| GGUF Conversion | โ
Complete | Q4_K_M quantized (4.4GB) |
| E2E Testing | โ
Complete | 27/27 tests passing (8.7s) |
| Claude Integration | โณ Planned | Final deployment to Claude Desktop |
Current Phase: Ready for deployment - All core features complete
---
๐งช Testing
$3
`bash
Run all tests (unit + E2E)
pnpm testRun only E2E tests
pnpm test tests/e2e/mcp-integration.test.tsRun deterministic tests only (no LLM required)
SKIP_LLM_TESTS=1 pnpm test tests/e2eWatch mode for development
pnpm test:watch
`$3
E2E Test Suite: 27 tests covering all MCP tools
| Tool | Tests | Type | Pass Rate |
| ------------ | ----- | ------------- | --------- |
| analyze_zig | 4 | Deterministic | 100% |
| compile_zig | 3 | Deterministic | 100% |
| get_zig_docs | 5 | LLM-powered | 100% |
| suggest_fix | 5 | LLM-powered | 100% |
| Integration | 3 | Mixed | 100% |
| Performance | 3 | Stress tests | 100% |
| Edge Cases | 4 | Error paths | 100% |
Execution time: 8.7 seconds (without LLM model, deterministic only)
With LLM model: ~60-120 seconds (includes model loading + inference)
$3
- Deterministic tests (12 tests): Always run, use Zig compiler directly
- LLM tests (15 tests): Auto-skip if model not found, graceful degradation
- CI/CD ready: Runs on GitHub Actions without GPU requirements
For detailed testing guide, see tests/e2e/README.md
---
๐ฆ Project Structure
`
zignet/
โโโ src/
โ โโโ config.ts # Environment-based configuration
โ โโโ mcp-server.ts # MCP protocol handler
โ โโโ zig/
โ โ โโโ manager.ts # Multi-version Zig download/cache
โ โ โโโ executor.ts # zig ast-check + fmt wrapper
โ โโโ llm/
โ โ โโโ model-downloader.ts # Auto-download GGUF from HuggingFace
โ โ โโโ session.ts # node-llama-cpp integration
โ โโโ tools/
โ โโโ analyze.ts # analyze_zig tool (COMPLETE)
โ โโโ compile.ts # compile_zig tool (COMPLETE)
โ โโโ docs.ts # get_zig_docs tool (COMPLETE)
โ โโโ suggest.ts # suggest_fix tool (COMPLETE)
โโโ scripts/
โ โโโ train-qwen-standard.py # Fine-tuning script (COMPLETE)
โ โโโ scrape-zig-repos.js # Dataset collection
โ โโโ install-zig.js # Zig version installer
โ โโโ test-config.cjs # Config system tests
โโโ data/
โ โโโ training/ # 13,756 examples (train/val/test)
โ โโโ zig-docs/ # Scraped documentation
โโโ models/
โ โโโ zignet-qwen-7b/ # Fine-tuned model + LoRA adapters
โโโ tests/
โ โโโ *.test.ts # Unit tests (lexer, parser, etc.)
โ โโโ e2e/
โ โโโ mcp-integration.test.ts # 27 E2E tests
โ โโโ README.md # Testing guide
โโโ docs/
โ โโโ AGENTS.md # Detailed project spec
โ โโโ DEVELOPMENT.md # Development guide
โ โโโ TESTING.md # Testing documentation
โโโ README.md # This file
`---
๐ค Model Details
Base Model: Qwen/Qwen2.5-Coder-7B-Instruct
Fine-tuning: QLoRA (4-bit) on 13,756 Zig examples
Dataset: 97% real-world repos (Zig 0.13-0.15), 3% documentation
Training: RTX 3090 (24GB VRAM), 3 epochs, ~8 hours
Output:
fulgidus/zignet-qwen2.5-coder-7b (HuggingFace)
Quantization: Q4_K_M (~4GB GGUF for node-llama-cpp)Why Qwen2.5-Coder-7B?
- Best Zig syntax understanding (benchmarked vs 14 models)
- Modern idioms (comptime, generics, error handling)
- Fast inference (~15-20s per query post-quantization)
---
๐ Benchmarks
| Model | Pass Rate | Avg Time | Quality | Notes |
| ------------------- | --------- | -------- | ------- | -------------------------- |
| Qwen2.5-Coder-7B | 100% | 29.58s | โญโญโญโญโญ | SELECTED - Best idioms |
| DeepSeek-Coder-6.7B | 100% | 27.86s | โญโญโญโญโญ | Didactic, verbose |
| Llama3.2-3B | 100% | 12.27s | โญโญโญโญ | Good balance |
| CodeLlama-7B | 100% | 24.61s | โญโญโญ | Confuses Zig/Rust |
| Qwen2.5-Coder-0.5B | 100% | 3.94s | โ | Invents syntax |
Full benchmarks:
scripts/test-results/---
๐ ๏ธ Development
`bash
Run tests
pnpm testRun specific component tests
pnpm test -- lexer
pnpm test -- parser
pnpm test -- type-checkerWatch mode
pnpm test:watchLinting
pnpm lint
pnpm lint:fixBuild
pnpm build
``---
See AGENTS.md for detailed project specification and development phases.
Current needs:
- Testing on diverse Zig codebases
- Edge case discovery (parser/type-checker)
- Performance optimization
- Documentation improvements
---
WTFPL v2 โ Do What The Fuck You Want To Public License
---
- Repository: https://github.com/fulgidus/zignet
- Model (post-training): https://huggingface.co/fulgidus/zignet-qwen2.5-coder-7b
- MCP Protocol: https://modelcontextprotocol.io
- Zig Language: https://ziglang.org
---
Status: โ
Phase 4 Complete - Ready for deployment (fine-tuning complete, E2E tests passing)